Behnaz Kavoosighafi, Saghi Hajisharif, Ehsan Miandji, Gabriel Baravdish, Wen Cao, Jonas Unger
{"title":"Deep SVBRDF Acquisition and Modelling: A Survey","authors":"Behnaz Kavoosighafi, Saghi Hajisharif, Ehsan Miandji, Gabriel Baravdish, Wen Cao, Jonas Unger","doi":"10.1111/cgf.15199","DOIUrl":null,"url":null,"abstract":"<p>Hand in hand with the rapid development of machine learning, deep learning and generative AI algorithms and architectures, the graphics community has seen a remarkable evolution of novel techniques for material and appearance capture. Typically, these machine-learning-driven methods and technologies, in contrast to traditional techniques, rely on only a single or very few input images, while enabling the recovery of detailed, high-quality measurements of bi-directional reflectance distribution functions, as well as the corresponding spatially varying material properties, also known as Spatially Varying Bi-directional Reflectance Distribution Functions (SVBRDFs). Learning-based approaches for appearance capture will play a key role in the development of new technologies that will exhibit a significant impact on virtually all domains of graphics. Therefore, to facilitate future research, this State-of-the-Art Report (STAR) presents an in-depth overview of the state-of-the-art in machine-learning-driven material capture in general, and focuses on SVBRDF acquisition in particular, due to its importance in accurately modelling complex light interaction properties of real-world materials. The overview includes a categorization of current methods along with a summary of each technique, an evaluation of their functionalities, their complexity in terms of acquisition requirements, computational aspects and usability constraints. The STAR is concluded by looking forward and summarizing open challenges in research and development toward predictive and general appearance capture in this field. A complete list of the methods and papers reviewed in this survey is available at computergraphics.on.liu.se/star_svbrdf_dl/.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15199","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Hand in hand with the rapid development of machine learning, deep learning and generative AI algorithms and architectures, the graphics community has seen a remarkable evolution of novel techniques for material and appearance capture. Typically, these machine-learning-driven methods and technologies, in contrast to traditional techniques, rely on only a single or very few input images, while enabling the recovery of detailed, high-quality measurements of bi-directional reflectance distribution functions, as well as the corresponding spatially varying material properties, also known as Spatially Varying Bi-directional Reflectance Distribution Functions (SVBRDFs). Learning-based approaches for appearance capture will play a key role in the development of new technologies that will exhibit a significant impact on virtually all domains of graphics. Therefore, to facilitate future research, this State-of-the-Art Report (STAR) presents an in-depth overview of the state-of-the-art in machine-learning-driven material capture in general, and focuses on SVBRDF acquisition in particular, due to its importance in accurately modelling complex light interaction properties of real-world materials. The overview includes a categorization of current methods along with a summary of each technique, an evaluation of their functionalities, their complexity in terms of acquisition requirements, computational aspects and usability constraints. The STAR is concluded by looking forward and summarizing open challenges in research and development toward predictive and general appearance capture in this field. A complete list of the methods and papers reviewed in this survey is available at computergraphics.on.liu.se/star_svbrdf_dl/.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.