Marcele O. K. Mendonça;Paulo S. R. Diniz;Javier Maroto Morales;Pascal Frossard
{"title":"Adversarial Training for Jamming-Robust Channel Estimation in OFDM Systems","authors":"Marcele O. K. Mendonça;Paulo S. R. Diniz;Javier Maroto Morales;Pascal Frossard","doi":"10.1109/OJSP.2024.3453176","DOIUrl":null,"url":null,"abstract":"Orthogonal frequency-division multiplexing (OFDM) is widely used to mitigate inter-symbol interference (ISI) from multipath fading. However, the open nature of wireless OFDM systems makes them vulnerable to jamming attacks. In this context, pilot jamming is critical as it focuses on corrupting the symbols used for channel estimation and equalization, degrading the system performance. Although neural networks (NNs) can improve channel estimation and mitigate pilot jamming penalty, they are also themselves susceptible to malicious perturbations known as adversarial examples. If the jamming attack is crafted in order to fool the NN, it represents an adversarial example that impairs the proper behavior of OFDM systems. In this work, we explore two machine learning (ML)-based jamming strategies that are especially intended to degrade the performance of ML-based channel estimators, in addition to a traditional Additive White Gaussian Noise (AWGN) jamming attack. These ML-based attacks create noise patterns designed to reduce the precision of the channel estimation process, thereby compromising the reliability and robustness of the communication system. We highlight the vulnerabilities of wireless communication systems to ML-based pilot jamming attacks that corrupts symbols used for channel estimation, leading to system performance degradation. To mitigate these threats, this paper proposes an adversarial training defense mechanism desined to counter jamming attacks. The effectiveness of this defense is validated through simulation results, demonstrating improved channel estimation performance in the presence of jamming attacks. The proposed defense methods aim to enhance the resilience of OFDM systems against pilot jamming attacks, ensuring more robust communication in wireless environments.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1031-1041"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10663066/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Orthogonal frequency-division multiplexing (OFDM) is widely used to mitigate inter-symbol interference (ISI) from multipath fading. However, the open nature of wireless OFDM systems makes them vulnerable to jamming attacks. In this context, pilot jamming is critical as it focuses on corrupting the symbols used for channel estimation and equalization, degrading the system performance. Although neural networks (NNs) can improve channel estimation and mitigate pilot jamming penalty, they are also themselves susceptible to malicious perturbations known as adversarial examples. If the jamming attack is crafted in order to fool the NN, it represents an adversarial example that impairs the proper behavior of OFDM systems. In this work, we explore two machine learning (ML)-based jamming strategies that are especially intended to degrade the performance of ML-based channel estimators, in addition to a traditional Additive White Gaussian Noise (AWGN) jamming attack. These ML-based attacks create noise patterns designed to reduce the precision of the channel estimation process, thereby compromising the reliability and robustness of the communication system. We highlight the vulnerabilities of wireless communication systems to ML-based pilot jamming attacks that corrupts symbols used for channel estimation, leading to system performance degradation. To mitigate these threats, this paper proposes an adversarial training defense mechanism desined to counter jamming attacks. The effectiveness of this defense is validated through simulation results, demonstrating improved channel estimation performance in the presence of jamming attacks. The proposed defense methods aim to enhance the resilience of OFDM systems against pilot jamming attacks, ensuring more robust communication in wireless environments.
正交频分复用(OFDM)被广泛用于缓解多径衰落造成的符号间干扰(ISI)。然而,无线 OFDM 系统的开放性使其容易受到干扰攻击。在这种情况下,先导干扰至关重要,因为它主要会破坏用于信道估计和均衡的符号,从而降低系统性能。虽然神经网络(NN)可以改善信道估计并减轻先导干扰的惩罚,但它们本身也容易受到被称为对抗范例的恶意扰动的影响。如果干扰攻击是为了愚弄神经网络而精心设计的,那么它就代表了一种损害 OFDM 系统正常行为的对抗范例。在这项工作中,除了传统的加性白高斯噪声(AWGN)干扰攻击外,我们还探索了两种基于机器学习(ML)的干扰策略,其目的是降低基于 ML 的信道估计器的性能。这些基于 ML 的攻击会产生噪音模式,旨在降低信道估计过程的精度,从而损害通信系统的可靠性和鲁棒性。我们强调了无线通信系统在基于 ML 的先导干扰攻击面前的脆弱性,这种攻击会破坏用于信道估计的符号,从而导致系统性能下降。为了减轻这些威胁,本文提出了一种对抗性训练防御机制,旨在对抗干扰攻击。这种防御机制的有效性通过仿真结果得到了验证,证明了在存在干扰攻击的情况下信道估计性能的提高。所提出的防御方法旨在增强 OFDM 系统抵御先导干扰攻击的能力,确保在无线环境中实现更稳健的通信。