Image Detection Using Combinatorial Auction

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Simon Anuk;Tamir Bendory;Amichai Painsky
{"title":"Image Detection Using Combinatorial Auction","authors":"Simon Anuk;Tamir Bendory;Amichai Painsky","doi":"10.1109/OJSP.2024.3444717","DOIUrl":null,"url":null,"abstract":"This paper studies the optimal solution of the classical problem of detecting the location of multiple image occurrences in a two-dimensional, noisy measurement. Assuming the image occurrences do not overlap, we formulate this task as a constrained maximum likelihood optimization problem. We show that the maximum likelihood estimator is equivalent to an instance of the winner determination problem from the field of combinatorial auction and that the solution can be obtained by searching over a binary tree. We then design a pruning mechanism that significantly accelerates the runtime of the search. We demonstrate on simulations and electron microscopy data sets that the proposed algorithm provides accurate detection in challenging regimes of high noise levels and densely packed image occurrences.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1015-1022"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637697/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the optimal solution of the classical problem of detecting the location of multiple image occurrences in a two-dimensional, noisy measurement. Assuming the image occurrences do not overlap, we formulate this task as a constrained maximum likelihood optimization problem. We show that the maximum likelihood estimator is equivalent to an instance of the winner determination problem from the field of combinatorial auction and that the solution can be obtained by searching over a binary tree. We then design a pruning mechanism that significantly accelerates the runtime of the search. We demonstrate on simulations and electron microscopy data sets that the proposed algorithm provides accurate detection in challenging regimes of high noise levels and densely packed image occurrences.
利用组合拍卖进行图像检测
本文研究了在二维噪声测量中检测多个图像出现位置这一经典问题的最优解。假设图像出现的位置没有重叠,我们将这一任务表述为一个受约束的最大似然优化问题。我们证明,最大似然估计器等同于组合拍卖领域的赢家确定问题的一个实例,并且可以通过在二叉树上搜索来获得解决方案。然后,我们设计了一种剪枝机制,大大加快了搜索的运行时间。我们通过模拟和电子显微镜数据集证明,所提出的算法能在高噪声水平和密集图像出现的挑战环境中提供精确的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信