Thermodynamic and kinetic study of palladium(II) complexation with 1-methyl-2-mercaptoimidazole (methimazole) and their importance for structural design of metallodrugs
{"title":"Thermodynamic and kinetic study of palladium(II) complexation with 1-methyl-2-mercaptoimidazole (methimazole) and their importance for structural design of metallodrugs","authors":"Viktorie Širůčková , Přemysl Lubal , Josef Hamacek , Libor Kapička , Lars-Ivar Elding","doi":"10.1016/j.jinorgbio.2024.112722","DOIUrl":null,"url":null,"abstract":"<div><div>The acidobasic and complexing properties of 1-methyl-2-mercaptoimidazole (<em>Methimazole</em>, an anti-thyroid drug) were investigated. The p<em>K</em><sub>a</sub> 11.49 ± 0.03 was estimated by molecular absorption spectroscopy (<em>I</em> = 0.10 M NaCl, <em>t</em> = 25.0 ± 0.1 °C). This value is in good agreement with the value 11.58 ± 0.05, obtained using the solvent-extraction technique. Theoretical (LFER and quantum chemical calculations) and experimental (<sup>1</sup>H/<sup>13</sup>C NMR spectroscopy) methods confirmed that the ligand prefers to be in the thion form, and the proton dissociation takes place on the nitrogen atom. Using glass electrode potentiometry, the complexation of the Pd(II) ion by the <em>methimazole</em> ligand occurs without the participation of protons. The best chemical model considers the [Pd(HL)]<sup>2+</sup>, [Pd(HL)<sub>2</sub>]<sup>2+</sup> and [Pd(HL)<sub>3</sub>]<sup>2+</sup> complex species, whose stability constants were also determined using spectroscopy and capillary zone electrophoretic (CZE) measurements. The metal complexes dissociate at –log [H<sup>+</sup>] > 7, where an uncharged palladium(II) hydroxide is formed. The formation kinetics of the palladium(II) complex with <em>methimazole</em> were studied in perchloric and hydrochloric acids (<em>I</em> = 1.00 M, <em>t</em> = 15–40 °C) and the determined rate constants and activation parameters are consistent with literature values determined for the reactions of the Pd(II) ion with thiourea derivatives. The rate constants decrease by two orders of magnitude in both media, which can be assigned to a lower tendency of the chloride ion to dissociate from the [PdCl<sub>4</sub>]<sup>2−</sup> complex species than the water molecule from the [Pd(H<sub>2</sub>O)<sub>4</sub>]<sup>2+</sup> ion. The presented results can be utilized for the design of new Pd and Pt metallodrugs.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002460","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The acidobasic and complexing properties of 1-methyl-2-mercaptoimidazole (Methimazole, an anti-thyroid drug) were investigated. The pKa 11.49 ± 0.03 was estimated by molecular absorption spectroscopy (I = 0.10 M NaCl, t = 25.0 ± 0.1 °C). This value is in good agreement with the value 11.58 ± 0.05, obtained using the solvent-extraction technique. Theoretical (LFER and quantum chemical calculations) and experimental (1H/13C NMR spectroscopy) methods confirmed that the ligand prefers to be in the thion form, and the proton dissociation takes place on the nitrogen atom. Using glass electrode potentiometry, the complexation of the Pd(II) ion by the methimazole ligand occurs without the participation of protons. The best chemical model considers the [Pd(HL)]2+, [Pd(HL)2]2+ and [Pd(HL)3]2+ complex species, whose stability constants were also determined using spectroscopy and capillary zone electrophoretic (CZE) measurements. The metal complexes dissociate at –log [H+] > 7, where an uncharged palladium(II) hydroxide is formed. The formation kinetics of the palladium(II) complex with methimazole were studied in perchloric and hydrochloric acids (I = 1.00 M, t = 15–40 °C) and the determined rate constants and activation parameters are consistent with literature values determined for the reactions of the Pd(II) ion with thiourea derivatives. The rate constants decrease by two orders of magnitude in both media, which can be assigned to a lower tendency of the chloride ion to dissociate from the [PdCl4]2− complex species than the water molecule from the [Pd(H2O)4]2+ ion. The presented results can be utilized for the design of new Pd and Pt metallodrugs.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.