On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn

Pub Date : 2024-09-17 DOI:10.1016/j.jalgebra.2024.08.033
Jakub Löwit
{"title":"On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn","authors":"Jakub Löwit","doi":"10.1016/j.jalgebra.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a <em>p</em>-adic version of this theory started to emerge: there are <em>p</em>-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for <em>p</em>-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic <span><math><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math></span> has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain <em>p</em>-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a p-adic version of this theory started to emerge: there are p-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for p-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic p has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain p-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for GLn.
分享
查看原文
论 GLn 的 p-adic Deligne-Lusztig varieties 的模ℓ 同调
1976 年,德莱尼和卢兹蒂格在某些代数变种的 étale 同调内实现了有限列群的表示理论。最近,这一理论的 p-adic 版本开始出现:存在 p-adic Deligne-Lusztig 空间,其同调包含 p-adic 群的表示理论信息--例如,它部分实现了特征零系数的局部朗兰兹对应关系。然而,正特征 ℓ≠p 的系数的平行情况迄今为止还没有被研究过。本文的目的就是启动这样的研究。特别是,我们将某些 p-adic Deligne-Lusztig 空间的同调与 GLn 的 Vignéras 模块局部朗兰兹对应关系联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信