Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients’ needs

IF 2.7 3区 医学 Q3 ONCOLOGY
Bruno Fionda , Elisa Placidi , Mischa de Ridder , Lidia Strigari , Stefano Patarnello , Kari Tanderup , Jean-Michel Hannoun-Levi , Frank-André Siebert , Luca Boldrini , Maria Antonietta Gambacorta , Marco De Spirito , Evis Sala , Luca Tagliaferri
{"title":"Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients’ needs","authors":"Bruno Fionda ,&nbsp;Elisa Placidi ,&nbsp;Mischa de Ridder ,&nbsp;Lidia Strigari ,&nbsp;Stefano Patarnello ,&nbsp;Kari Tanderup ,&nbsp;Jean-Michel Hannoun-Levi ,&nbsp;Frank-André Siebert ,&nbsp;Luca Boldrini ,&nbsp;Maria Antonietta Gambacorta ,&nbsp;Marco De Spirito ,&nbsp;Evis Sala ,&nbsp;Luca Tagliaferri","doi":"10.1016/j.ctro.2024.100865","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.</div></div>","PeriodicalId":10342,"journal":{"name":"Clinical and Translational Radiation Oncology","volume":"49 ","pages":"Article 100865"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405630824001423","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
介入放射治疗(近距离放射治疗)中的人工智能:加强以患者为中心的护理,满足患者需求
这篇综述探讨了人工智能(AI)在介入放射治疗(IRT)中的应用,强调了人工智能在简化工作流程和加强患者护理方面的潜力。通过对 2002 年至 2024 年期间的 78 篇相关论文进行系统分析,我们发现了轮廓塑造、治疗计划、结果预测和质量保证方面的重大进展。人工智能驱动的方法有望缩短手术时间、实现个性化治疗并改善肿瘤患者的治疗效果。然而,临床验证和质量保证协议等挑战依然存在。不过,人工智能为优化 IRT 和满足不断变化的患者需求提供了一个变革性的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical and Translational Radiation Oncology
Clinical and Translational Radiation Oncology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.30
自引率
3.20%
发文量
114
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信