S. Guo , Z.Q. Jin , Y.Q. Liu , F.R. Wang , Y.Q. Wang , Z.X. Li , H.L. Yi , G.M. Xie
{"title":"Achieving excellent properties of laser tailor-welded thin Al-Si coated press-hardened steel joint via controlling dilution rate","authors":"S. Guo , Z.Q. Jin , Y.Q. Liu , F.R. Wang , Y.Q. Wang , Z.X. Li , H.L. Yi , G.M. Xie","doi":"10.1016/j.jmapro.2024.09.065","DOIUrl":null,"url":null,"abstract":"<div><div>In laser tailor welded traditional 25 μm thick Al-Si coated press-hardened steel (PHS), a lot of ferrite was easily formed in the weld, so filling with expensive high-alloys wire is usually necessary. In this work, a new thin Al-Si coated PHS with 18 μm thickness was laser tailor welded, and a cheap low alloy wire was attempted to fill into the weld to via control the dilution rate. At a high dilution rate of 94%, the weld contained a ferrite fraction of 38%, resulting in the fracture occurring in the weld during tension and bending. At a medium dilution rate of 85%, the ferrite fraction in the weld decreased to 18%, obtaining excellent tensile and bending properties. The tensile strength and elongation of the joint reached 1528 MPa and 5.6%, respectively, with fracture being in the base metal (BM). The maximum bending load and displacement were 1291 N and 7.0 mm, respectively, and cracks initiated and propagated in the BM. This is attributed to the small amount of ferrite and stress concentration in the narrow weld. At a low dilution rate of 76%, the ferrite reduced to 6%, and the bending cracks initiated and propagated in the BM. However, the tensile specimen fractured in the weld, which should be related to the relatively low C concentration and the stress concentration at the weld toe due to the weld reinforcements.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"131 ","pages":"Pages 879-890"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524009848","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In laser tailor welded traditional 25 μm thick Al-Si coated press-hardened steel (PHS), a lot of ferrite was easily formed in the weld, so filling with expensive high-alloys wire is usually necessary. In this work, a new thin Al-Si coated PHS with 18 μm thickness was laser tailor welded, and a cheap low alloy wire was attempted to fill into the weld to via control the dilution rate. At a high dilution rate of 94%, the weld contained a ferrite fraction of 38%, resulting in the fracture occurring in the weld during tension and bending. At a medium dilution rate of 85%, the ferrite fraction in the weld decreased to 18%, obtaining excellent tensile and bending properties. The tensile strength and elongation of the joint reached 1528 MPa and 5.6%, respectively, with fracture being in the base metal (BM). The maximum bending load and displacement were 1291 N and 7.0 mm, respectively, and cracks initiated and propagated in the BM. This is attributed to the small amount of ferrite and stress concentration in the narrow weld. At a low dilution rate of 76%, the ferrite reduced to 6%, and the bending cracks initiated and propagated in the BM. However, the tensile specimen fractured in the weld, which should be related to the relatively low C concentration and the stress concentration at the weld toe due to the weld reinforcements.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.