Hao Hu, Shuyuan Pan, Zhiyong Ma, Kaiyi Liu, Yi Li, Haifeng Bao, Chengwei Deng, Fang Luo, Zehui Yang
{"title":"A self-powered system to electrochemically generate ammonia driven by palladium single atom electrocatalyst","authors":"Hao Hu, Shuyuan Pan, Zhiyong Ma, Kaiyi Liu, Yi Li, Haifeng Bao, Chengwei Deng, Fang Luo, Zehui Yang","doi":"10.1002/sus2.237","DOIUrl":null,"url":null,"abstract":"The utilization of single atoms (SAs) as trifunctional electrocatalyst for nitrogen reduction, oxygen reduction, and oxygen evolution reactions (NRR, ORR, and OER) is still a formidable challenge. Herein, we devise one-pot synthesized palladium SAs stabilized on nitrogen-doped carbon palladium SA electrocatalyst (Pd-SA/NC) as efficient trifunctional electrocatalyst for NRR, ORR, and OER. Pd-SA/NC performs a robust catalytic activity toward NRR with faradaic efficiency of 22.5% at −0.25 V versus reversible hydrogen electrode (RHE), and the relative Pd utilization efficiency is enhanced by 17-fold than Pd-NP/NC. In addition, the half-wave potential reaches 0.876 V versus RHE, amounting to a 58-time higher mass activity than commercial Pt/C. Moreover, the overpotential at 10 mA cm<sup>−2</sup> is as low as 287 mV for Pd-SA/NC, outperforming the commercial IrO<sub>2</sub> by 360 times in turnover frequency at 1.6 V versus RHE. Accordingly, the assembled rechargeable zinc-air battery (ZAB) achieves a maximum power density of 170 mW cm<sup>−2</sup>, boosted by 2.3 times than Pt/C–IrO<sub>2</sub>. Two constructed ZABs efficiently power the NRR-OER system to electrochemically generate ammonia implying its superior trifunctionality.","PeriodicalId":520230,"journal":{"name":"SusMat","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of single atoms (SAs) as trifunctional electrocatalyst for nitrogen reduction, oxygen reduction, and oxygen evolution reactions (NRR, ORR, and OER) is still a formidable challenge. Herein, we devise one-pot synthesized palladium SAs stabilized on nitrogen-doped carbon palladium SA electrocatalyst (Pd-SA/NC) as efficient trifunctional electrocatalyst for NRR, ORR, and OER. Pd-SA/NC performs a robust catalytic activity toward NRR with faradaic efficiency of 22.5% at −0.25 V versus reversible hydrogen electrode (RHE), and the relative Pd utilization efficiency is enhanced by 17-fold than Pd-NP/NC. In addition, the half-wave potential reaches 0.876 V versus RHE, amounting to a 58-time higher mass activity than commercial Pt/C. Moreover, the overpotential at 10 mA cm−2 is as low as 287 mV for Pd-SA/NC, outperforming the commercial IrO2 by 360 times in turnover frequency at 1.6 V versus RHE. Accordingly, the assembled rechargeable zinc-air battery (ZAB) achieves a maximum power density of 170 mW cm−2, boosted by 2.3 times than Pt/C–IrO2. Two constructed ZABs efficiently power the NRR-OER system to electrochemically generate ammonia implying its superior trifunctionality.