The Genomic Landscape of Benign and Malignant Thyroid Tumors from Individuals Carrying Germline PTEN Variants Is Distinct from Sporadic Thyroid Cancers
Gilman Plitt, Takae Brewer, Lamis Yehia, Laura Rabinowitz, Christopher C. Griffith, Charis Eng
{"title":"The Genomic Landscape of Benign and Malignant Thyroid Tumors from Individuals Carrying Germline PTEN Variants Is Distinct from Sporadic Thyroid Cancers","authors":"Gilman Plitt, Takae Brewer, Lamis Yehia, Laura Rabinowitz, Christopher C. Griffith, Charis Eng","doi":"10.1158/0008-5472.can-23-2216","DOIUrl":null,"url":null,"abstract":"Patients with PTEN hamartoma tumor syndrome (PHTS), a molecular diagnosis for those carrying germline PTEN pathogenic variants, have a high prevalence of benign and malignant thyroid disease. Characterizing the genomic landscape in PHTS thyroid tumors could provide insights into malignant potential and tumor progression to help optimize diagnosis, surveillance, and treatment in this population. To reveal the somatic alterations in PHTS-associated thyroid tumors, we conducted exome sequencing on 58 thyroid tumors (28 cancers, 30 benign nodules) from 19 patients with PHTS. A control cohort of 447 sporadic papillary thyroid cancers (PTC) from The Cancer Genome Atlas was used for comparison. PHTS-associated thyroid tumors had a unique genomic landscape in the setting of a pathogenic germline PTEN mutation, when compared with the general population. PHTS-associated thyroid tumors demonstrated a high frequency of second-hit somatic PTEN alterations, including variants and loss-of-heterozygosity events. Second-hit somatic PTEN alterations were more prevalent in PHTS-associated PTC than sporadic PTC (65.2% vs. 0.067%), occurring frequently in PHTS-associated follicular thyroid cancer (100%) and benign follicular nodules (90%). PHTS-associated PTC additionally harbored somatic alterations in BRAF, RAS family members, and genes associated with DNA double-stranded break repair, as well as somatic arm-level copy-number variations. Together, these findings suggest that biallelic PTEN alterations may function as foundational mutations in PHTS thyroid tissue, promoting benign growth and increasing potential for malignant transformation through impaired DNA double-stranded break repair and increased genomic instability. The unique genomic landscape of PHTS-associated thyroid tumors carries implications for molecular-targeted therapies for patients. Significance: Exome sequencing reveals the distinct mutational landscape of PTEN hamartoma tumor syndrome–associated thyroid cancers from sporadic counterparts, providing insights into tumor progression and behavior that could help improve diagnosis, surveillance, and treatment.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"6 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-23-2216","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with PTEN hamartoma tumor syndrome (PHTS), a molecular diagnosis for those carrying germline PTEN pathogenic variants, have a high prevalence of benign and malignant thyroid disease. Characterizing the genomic landscape in PHTS thyroid tumors could provide insights into malignant potential and tumor progression to help optimize diagnosis, surveillance, and treatment in this population. To reveal the somatic alterations in PHTS-associated thyroid tumors, we conducted exome sequencing on 58 thyroid tumors (28 cancers, 30 benign nodules) from 19 patients with PHTS. A control cohort of 447 sporadic papillary thyroid cancers (PTC) from The Cancer Genome Atlas was used for comparison. PHTS-associated thyroid tumors had a unique genomic landscape in the setting of a pathogenic germline PTEN mutation, when compared with the general population. PHTS-associated thyroid tumors demonstrated a high frequency of second-hit somatic PTEN alterations, including variants and loss-of-heterozygosity events. Second-hit somatic PTEN alterations were more prevalent in PHTS-associated PTC than sporadic PTC (65.2% vs. 0.067%), occurring frequently in PHTS-associated follicular thyroid cancer (100%) and benign follicular nodules (90%). PHTS-associated PTC additionally harbored somatic alterations in BRAF, RAS family members, and genes associated with DNA double-stranded break repair, as well as somatic arm-level copy-number variations. Together, these findings suggest that biallelic PTEN alterations may function as foundational mutations in PHTS thyroid tissue, promoting benign growth and increasing potential for malignant transformation through impaired DNA double-stranded break repair and increased genomic instability. The unique genomic landscape of PHTS-associated thyroid tumors carries implications for molecular-targeted therapies for patients. Significance: Exome sequencing reveals the distinct mutational landscape of PTEN hamartoma tumor syndrome–associated thyroid cancers from sporadic counterparts, providing insights into tumor progression and behavior that could help improve diagnosis, surveillance, and treatment.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.