Lorenz J. Falling, Woosun Jang, Sourav Laha, Thomas Götsch, Maxwell W. Terban, Sebastian Bette, Rik Mom, Juan-Jesús Velasco-Vélez, Frank Girgsdies, Detre Teschner, Andrey Tarasov, Cheng-Hao Chuang, Thomas Lunkenbein, Axel Knop-Gericke, Daniel Weber, Robert Dinnebier, Bettina V. Lotsch, Robert Schlögl, Travis E. Jones
{"title":"Atomic Insights into the Competitive Edge of Nanosheets Splitting Water","authors":"Lorenz J. Falling, Woosun Jang, Sourav Laha, Thomas Götsch, Maxwell W. Terban, Sebastian Bette, Rik Mom, Juan-Jesús Velasco-Vélez, Frank Girgsdies, Detre Teschner, Andrey Tarasov, Cheng-Hao Chuang, Thomas Lunkenbein, Axel Knop-Gericke, Daniel Weber, Robert Dinnebier, Bettina V. Lotsch, Robert Schlögl, Travis E. Jones","doi":"10.1021/jacs.4c10312","DOIUrl":null,"url":null,"abstract":"The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO<sub>2</sub>. Iridium oxohydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with the atomic structure. While amorphous IOHs perform best, they are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain the performance. However, it is not fully understood how activity and stability are related at the atomic level, hampering rational design. Herein, we provide simple design rules (Figure 12) derived from the literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead material because they provide excellent catalyst utilization and a predictable structure. We found that IrOOH signals the chemical stability of crystalline IOHs while surpassing the activity of amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ<sub>3Δ</sub>-O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates from coordinative unsaturated edge sites with radical character, i.e., μ<sub>1</sub>-O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"35 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10312","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO2. Iridium oxohydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with the atomic structure. While amorphous IOHs perform best, they are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain the performance. However, it is not fully understood how activity and stability are related at the atomic level, hampering rational design. Herein, we provide simple design rules (Figure 12) derived from the literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead material because they provide excellent catalyst utilization and a predictable structure. We found that IrOOH signals the chemical stability of crystalline IOHs while surpassing the activity of amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ3Δ-O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates from coordinative unsaturated edge sites with radical character, i.e., μ1-O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.