FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence

Sahin Lale, Peter I. Renn, Kamyar Azizzadenesheli, Babak Hassibi, Morteza Gharib, Anima Anandkumar
{"title":"FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence","authors":"Sahin Lale, Peter I. Renn, Kamyar Azizzadenesheli, Babak Hassibi, Morteza Gharib, Anima Anandkumar","doi":"10.1038/s44182-024-00013-0","DOIUrl":null,"url":null,"abstract":"Controlling aerodynamic forces in turbulent conditions is crucial for UAV operation. Traditional reactive methods often struggle due to unpredictable flow and sensor noise. We present FALCON (Fourier Adaptive Learning and Control), a model-based reinforcement learning framework for effective modeling and control of aerodynamic forces under turbulent flows. FALCON leverages two key insights: turbulent dynamics are well-modeled in the frequency domain, and most turbulent energy is concentrated in low-frequencies. FALCON learns a concise Fourier basis to model system dynamics from 35 s of flow data. To address sensor limitations, FALCON models dynamics using a short history of actions and measurements. With this approach, FALCON applies model predictive control for safe and efficient control. Tested in the Caltech wind tunnel under highly turbulent conditions, FALCON learns to control the underlying nonlinear dynamics with less than 9 min of data, consistently outperforming state-of-the-art methods. We provide guarantees for FALCON, ensuring stability and robustness.","PeriodicalId":499869,"journal":{"name":"npj Robotics","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44182-024-00013-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44182-024-00013-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling aerodynamic forces in turbulent conditions is crucial for UAV operation. Traditional reactive methods often struggle due to unpredictable flow and sensor noise. We present FALCON (Fourier Adaptive Learning and Control), a model-based reinforcement learning framework for effective modeling and control of aerodynamic forces under turbulent flows. FALCON leverages two key insights: turbulent dynamics are well-modeled in the frequency domain, and most turbulent energy is concentrated in low-frequencies. FALCON learns a concise Fourier basis to model system dynamics from 35 s of flow data. To address sensor limitations, FALCON models dynamics using a short history of actions and measurements. With this approach, FALCON applies model predictive control for safe and efficient control. Tested in the Caltech wind tunnel under highly turbulent conditions, FALCON learns to control the underlying nonlinear dynamics with less than 9 min of data, consistently outperforming state-of-the-art methods. We provide guarantees for FALCON, ensuring stability and robustness.

Abstract Image

FALCON:用于极端湍流条件下干扰抑制的傅立叶自适应学习与控制
控制湍流条件下的空气动力对于无人机的运行至关重要。传统的反应式方法往往因不可预测的气流和传感器噪声而难以奏效。我们提出了 FALCON(傅立叶自适应学习与控制),这是一种基于模型的强化学习框架,用于对湍流下的气动力进行有效建模和控制。FALCON 利用了两个关键的见解:湍流动力学在频域中建模良好,而且大部分湍流能量集中在低频。FALCON 可从 35 秒的流动数据中学习简明的傅立叶基础,建立系统动力学模型。为了解决传感器的局限性,FALCON 利用短时间内的行动和测量数据建立动态模型。通过这种方法,FALCON 可以应用模型预测控制来实现安全高效的控制。FALCON 在加州理工学院风洞的高湍流条件下进行了测试,只需不到 9 分钟的数据就能学会控制底层非线性动力学,性能始终优于最先进的方法。我们为 FALCON 提供保证,确保其稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信