{"title":"Delineating cell types with transcriptional kinetics","authors":"Yicheng Gao, Qi Liu","doi":"10.1038/s43588-024-00691-8","DOIUrl":null,"url":null,"abstract":"A recent study proposes an approach that integrates unspliced and spliced mRNA count data by leveraging shared biophysical states across cells, offering a more interpretable and consistent framework for determining cell clusters based on transcriptional kinetics.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 9","pages":"657-658"},"PeriodicalIF":12.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00691-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A recent study proposes an approach that integrates unspliced and spliced mRNA count data by leveraging shared biophysical states across cells, offering a more interpretable and consistent framework for determining cell clusters based on transcriptional kinetics.