Daniel Hernandez, Taewoo Nam, Eunwoo Lee, Geun Bae Ko, Jae Sung Lee, Kyoung-Nam Kim
{"title":"Simulation Design of a Triple Antenna Combination for PET-MRI Imaging Compatible With 3, 7, and 11.74 T MRI Scanner","authors":"Daniel Hernandez, Taewoo Nam, Eunwoo Lee, Geun Bae Ko, Jae Sung Lee, Kyoung-Nam Kim","doi":"10.1002/ima.23191","DOIUrl":null,"url":null,"abstract":"<p>The use of electromagnetism and the design of antennas in the field of medical imaging have played important roles in clinical practice. Specifically, magnetic resonance imaging (MRI) utilizes transmission and reception antennas, or coils, that are tuned to specific frequencies depending on the strength of the main magnet. Clinical scanners operating at 3 Teslas (T) function at a frequency of 127 MHz, while research scanners at 7 T operate at 300 MHz. An 11.74 T scanner for human imaging, which is currently under development, will operate at a frequency of 500 MHz. MRI allows for the high-definition scanning of biological tissues, making it a valuable tool for enhancing images acquired with positron emission tomography (PET). PET is an imaging modality used to evaluate the metabolism of organs or cancers. With recent advancements in the development of portable PET systems that can be integrated into any MRI scanner, we propose the design based on electromagnetic simulations of a triple-tuned array of dipole antennas to operate at 127, 300, and 500 MHz. This array can be attached to the PET inset and used in 3, 7, or 11.74 T scanners.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.23191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23191","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The use of electromagnetism and the design of antennas in the field of medical imaging have played important roles in clinical practice. Specifically, magnetic resonance imaging (MRI) utilizes transmission and reception antennas, or coils, that are tuned to specific frequencies depending on the strength of the main magnet. Clinical scanners operating at 3 Teslas (T) function at a frequency of 127 MHz, while research scanners at 7 T operate at 300 MHz. An 11.74 T scanner for human imaging, which is currently under development, will operate at a frequency of 500 MHz. MRI allows for the high-definition scanning of biological tissues, making it a valuable tool for enhancing images acquired with positron emission tomography (PET). PET is an imaging modality used to evaluate the metabolism of organs or cancers. With recent advancements in the development of portable PET systems that can be integrated into any MRI scanner, we propose the design based on electromagnetic simulations of a triple-tuned array of dipole antennas to operate at 127, 300, and 500 MHz. This array can be attached to the PET inset and used in 3, 7, or 11.74 T scanners.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.