Dehydroepiandrosterone-α-2-Deoxyglucoside Exhibits Enhanced Anticancer Effects in MCF-7 Breast Cancer Cells and Inhibits Glucose-6-Phosphate Dehydrogenase Activity
{"title":"Dehydroepiandrosterone-α-2-Deoxyglucoside Exhibits Enhanced Anticancer Effects in MCF-7 Breast Cancer Cells and Inhibits Glucose-6-Phosphate Dehydrogenase Activity","authors":"Hsu-Feng Liu, Shen-Chieh Chou, Sheng-Cih Huang, Tzu-Yu Huang, Po-Yun Hsiao, Feng-Pai Chou, Tung-Kung Wu","doi":"10.1111/cbdd.14624","DOIUrl":null,"url":null,"abstract":"<p>In the pentose phosphate pathway, dehydroepiandrosterone (DHEA) uncompetitively inhibits glucose-6-phosphate dehydrogenase (G6PD), reducing NADPH production and increasing oxidative stress, which can influence the onset and/or progression of several diseases, including cancer. 2-Deoxy-D-glucose (2-DG), a glucose mimetic, competes with glucose for cellular uptake, inhibiting glycolysis and competing with glucose-6-phosphate (G-6-P) for G6PD activity. In this study, we report that DHEA-α-2-DG (<b>5</b>), an α-covalent conjugate of DHEA and 2-DG, exhibits better anticancer activity than DHEA, 2-DG, DHEA +2-DG, and polydatin in MCF-7 cells, and reduces NADPH/NADP<sup>+</sup> ratio in cellular assays. In vitro enzyme kinetics and molecular docking studies showed that <b>5</b> uncompetitively inhibits human G6PD activity and binds to the structural NADP<sup>+</sup> site but not to the catalytic NADP<sup>+</sup> site. Further combining <b>5</b> with the FDA-approved drug tamoxifen enhanced its cytotoxicity against MCF-7 cells, suggesting that it could serve as a candidate for combination of drug strategies.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.14624","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14624","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the pentose phosphate pathway, dehydroepiandrosterone (DHEA) uncompetitively inhibits glucose-6-phosphate dehydrogenase (G6PD), reducing NADPH production and increasing oxidative stress, which can influence the onset and/or progression of several diseases, including cancer. 2-Deoxy-D-glucose (2-DG), a glucose mimetic, competes with glucose for cellular uptake, inhibiting glycolysis and competing with glucose-6-phosphate (G-6-P) for G6PD activity. In this study, we report that DHEA-α-2-DG (5), an α-covalent conjugate of DHEA and 2-DG, exhibits better anticancer activity than DHEA, 2-DG, DHEA +2-DG, and polydatin in MCF-7 cells, and reduces NADPH/NADP+ ratio in cellular assays. In vitro enzyme kinetics and molecular docking studies showed that 5 uncompetitively inhibits human G6PD activity and binds to the structural NADP+ site but not to the catalytic NADP+ site. Further combining 5 with the FDA-approved drug tamoxifen enhanced its cytotoxicity against MCF-7 cells, suggesting that it could serve as a candidate for combination of drug strategies.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.