Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte

Miao Yan, Qi Fang, Rui Ding, Yi Li, Jian Guo, Jinmei Xie, Yuzhen Zhang, Yuming He, Ziyang Yan, Zhiqiang Chen, Xiujuan Sun, Enhui Liu
{"title":"Unveiling Na-ion storage mechanism and interface property of layered perovskite Bi2TiO4F2@rGO anode in ether-based electrolyte","authors":"Miao Yan,&nbsp;Qi Fang,&nbsp;Rui Ding,&nbsp;Yi Li,&nbsp;Jian Guo,&nbsp;Jinmei Xie,&nbsp;Yuzhen Zhang,&nbsp;Yuming He,&nbsp;Ziyang Yan,&nbsp;Zhiqiang Chen,&nbsp;Xiujuan Sun,&nbsp;Enhui Liu","doi":"10.1002/cnl2.163","DOIUrl":null,"url":null,"abstract":"<p>To unveil the charge storage mechanisms and interface properties of electrode materials is very challenging for Na-ion storage. In this work, we report that the novel layered perovskite Bi<sub>2</sub>TiO<sub>4</sub>F<sub>2</sub>@reduced graphene oxides (BTOF@rGO) serves as a promising anode for Na-ion storage in an ether-based electrolyte, which exhibits much better electrochemical performance than in an ester-based electrolyte. Interestingly, BTOF@rGO possesses a prominent specific capacity of 458.3–102 mAh g<sup>−1</sup>/0.02–1 A g<sup>−1</sup> and a high initial coulombic efficiency (ICE) of 70.3%. Cross-sectional morphology and depth profile surface chemistry indicate not only a denser reactive interfacial layer but also a superior solid electrolyte interface film containing a higher proportion of inorganic components, which accelerates Na<sup>+</sup> migration and is an essential factor for the improvement of ICE and other electrochemical properties. Electrochemical tests and ex situ measurements demonstrate the triple hybridization Na-ion storage mechanism of conversion, alloying, and intercalation for BTOF@rGO in the ether-based electrolyte. Furthermore, the Na-ion batteries assembled with the BTOF@rGO anode and the commercial Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>@C cathode exhibit remarkable energy densities and power densities. Overall, the work shows deep insights on developing advanced electrode materials for efficient Na-ion storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 5","pages":"818-831"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To unveil the charge storage mechanisms and interface properties of electrode materials is very challenging for Na-ion storage. In this work, we report that the novel layered perovskite Bi2TiO4F2@reduced graphene oxides (BTOF@rGO) serves as a promising anode for Na-ion storage in an ether-based electrolyte, which exhibits much better electrochemical performance than in an ester-based electrolyte. Interestingly, BTOF@rGO possesses a prominent specific capacity of 458.3–102 mAh g−1/0.02–1 A g−1 and a high initial coulombic efficiency (ICE) of 70.3%. Cross-sectional morphology and depth profile surface chemistry indicate not only a denser reactive interfacial layer but also a superior solid electrolyte interface film containing a higher proportion of inorganic components, which accelerates Na+ migration and is an essential factor for the improvement of ICE and other electrochemical properties. Electrochemical tests and ex situ measurements demonstrate the triple hybridization Na-ion storage mechanism of conversion, alloying, and intercalation for BTOF@rGO in the ether-based electrolyte. Furthermore, the Na-ion batteries assembled with the BTOF@rGO anode and the commercial Na3V2(PO4)2F3@C cathode exhibit remarkable energy densities and power densities. Overall, the work shows deep insights on developing advanced electrode materials for efficient Na-ion storage.

Abstract Image

揭示醚基电解质中层状过氧化物 Bi2TiO4F2@rGO 阳极的钠离子存储机理和界面特性
要揭示电极材料的电荷存储机制和界面特性,对于瑙离子存储来说非常具有挑战性。在这项工作中,我们报告了新型层状包晶Bi2TiO4F2@还原石墨烯氧化物(BTOF@rGO)在醚基电解质中作为瑙离子存储阳极的前景,其电化学性能远远优于酯基电解质。有趣的是,BTOF@rGO 的比容量高达 458.3-102 mAh g-1/0.02-1 A g-1,初始库仑效率高达 70.3%。横截面形貌和深度剖面表面化学性质表明,不仅反应界面层更致密,而且固体电解质界面膜更优异,含有更高比例的无机成分,这加速了 Na+ 迁移,是提高 ICE 和其他电化学性能的重要因素。电化学测试和原位测量证明了 BTOF@rGO 在醚基电解质中的转化、合金化和插层三重杂化 Na 离子存储机制。此外,用 BTOF@rGO 阳极和商用 Na3V2(PO4)2F3@C 阴极组装的瑙离子电池表现出显著的能量密度和功率密度。总之,该研究成果对开发用于高效氖离子存储的先进电极材料具有深刻的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信