{"title":"Towards a Geometric Understanding of Spatiotemporal Graph Convolution Networks","authors":"Pratyusha Das;Sarath Shekkizhar;Antonio Ortega","doi":"10.1109/OJSP.2024.3396635","DOIUrl":null,"url":null,"abstract":"Spatiotemporal graph convolutional networks (STGCNs) have emerged as a desirable model for \n<italic>skeleton</i>\n-based human action recognition. Despite achieving state-of-the-art performance, there is a limited understanding of the representations learned by these models, which hinders their application in critical and real-world settings. While layerwise analysis of CNN models has been studied in the literature, to the best of our knowledge, there exists \n<italic>no study</i>\n on the layerwise explainability of the embeddings learned on spatiotemporal data using STGCNs. In this paper, we first propose to use a local Dataset Graph (DS-Graph) obtained from the feature representation of input data at each layer to develop an understanding of the layer-wise embedding geometry of the STGCN. To do so, we develop a window-based dynamic time warping (DTW) method to compute the distance between data sequences with varying temporal lengths. To validate our findings, we have developed a layer-specific Spatiotemporal Graph Gradient-weighted Class Activation Mapping (L-STG-GradCAM) technique tailored for spatiotemporal data. This approach enables us to visually analyze and interpret each layer within the STGCN network. We characterize the functions learned by each layer of the STGCN using the label smoothness of the representation and visualize them using our L-STG-GradCAM approach. Our proposed method is generic and can yield valuable insights for STGCN architectures in different applications. However, this paper focuses on the human activity recognition task as a representative application. Our experiments show that STGCN models learn representations that capture general human motion in their initial layers while discriminating different actions only in later layers. This justifies experimental observations showing that fine-tuning deeper layers works well for transfer between related tasks. We provide experimental evidence for different human activity datasets and advanced spatiotemporal graph networks to validate that the proposed method is general enough to analyze any STGCN model and can be useful for drawing insight into networks in various scenarios. We also show that noise at the input has a limited effect on label smoothness, which can help justify the robustness of STGCNs to noise.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1023-1030"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10518107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10518107/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spatiotemporal graph convolutional networks (STGCNs) have emerged as a desirable model for
skeleton
-based human action recognition. Despite achieving state-of-the-art performance, there is a limited understanding of the representations learned by these models, which hinders their application in critical and real-world settings. While layerwise analysis of CNN models has been studied in the literature, to the best of our knowledge, there exists
no study
on the layerwise explainability of the embeddings learned on spatiotemporal data using STGCNs. In this paper, we first propose to use a local Dataset Graph (DS-Graph) obtained from the feature representation of input data at each layer to develop an understanding of the layer-wise embedding geometry of the STGCN. To do so, we develop a window-based dynamic time warping (DTW) method to compute the distance between data sequences with varying temporal lengths. To validate our findings, we have developed a layer-specific Spatiotemporal Graph Gradient-weighted Class Activation Mapping (L-STG-GradCAM) technique tailored for spatiotemporal data. This approach enables us to visually analyze and interpret each layer within the STGCN network. We characterize the functions learned by each layer of the STGCN using the label smoothness of the representation and visualize them using our L-STG-GradCAM approach. Our proposed method is generic and can yield valuable insights for STGCN architectures in different applications. However, this paper focuses on the human activity recognition task as a representative application. Our experiments show that STGCN models learn representations that capture general human motion in their initial layers while discriminating different actions only in later layers. This justifies experimental observations showing that fine-tuning deeper layers works well for transfer between related tasks. We provide experimental evidence for different human activity datasets and advanced spatiotemporal graph networks to validate that the proposed method is general enough to analyze any STGCN model and can be useful for drawing insight into networks in various scenarios. We also show that noise at the input has a limited effect on label smoothness, which can help justify the robustness of STGCNs to noise.