Aisha Javed, Alex Neumann, Haibin Cai, Carlos Alberto Arnillas, George B. Arhonditsis
{"title":"A reservoir-based approach of the SWAT hydrological model in the Napanee River and Wilton Creek agricultural watersheds, Bay of Quinte","authors":"Aisha Javed, Alex Neumann, Haibin Cai, Carlos Alberto Arnillas, George B. Arhonditsis","doi":"10.1016/j.jglr.2024.102404","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ the Soil and Water Assessment Tool (SWAT), to simulate the hydrological cycle in the Napanee River and Wilton Creek watersheds located in the Bay of Quinte Area of Concern. The geomorphological attributes of the two sites presented challenges in successfully reproducing the observed streamflow with a conceptual model, like SWAT. After adjusting the model inputs and revising the boundary conditions, SWAT performance for the Napanee River model was found to be “very good” within both calibration (Nash-Sutcliffe efficiency, NSE, =0.83 and NSE = 0.87 for the daily and monthly streamflow rates, respectively) and validation (NSE = 0.87 and NSE = 0.91) domains. In contrast, despite the small size of Wilton Creek (∼233 km<sup>2</sup>) and the lack of permanent or human-regulated dams, the observed streamflow patterns displayed considerably delayed response to extreme precipitation events which posed challenges in achieving satisfactory model performance. Field evidence suggests that model residual variability is driven by excessive surface storage of water, the presence of beaver dams and narrowing of the stream channels under the bridges, which could potentially delay the flow of water for many days. After delineating the areas of flooding and treating them as reservoirs in Wilton Creek, we were able to overcome the modelling challenges with minor modifications in the original SWAT configuration and achieve satisfactory fit for both the calibration (NSE = 0.55 and NSE = 0.73) and validation (NSE = 0.59 and NSE = 0.76) periods. Our study suggests that the reservoirs play a significant role in buffering the impact of extreme flow conditions, especially during the spring freshet</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 5","pages":"Article 102404"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0380133024001631/pdfft?md5=27434f7907d14defe3f9fbcac885958d&pid=1-s2.0-S0380133024001631-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024001631","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we employ the Soil and Water Assessment Tool (SWAT), to simulate the hydrological cycle in the Napanee River and Wilton Creek watersheds located in the Bay of Quinte Area of Concern. The geomorphological attributes of the two sites presented challenges in successfully reproducing the observed streamflow with a conceptual model, like SWAT. After adjusting the model inputs and revising the boundary conditions, SWAT performance for the Napanee River model was found to be “very good” within both calibration (Nash-Sutcliffe efficiency, NSE, =0.83 and NSE = 0.87 for the daily and monthly streamflow rates, respectively) and validation (NSE = 0.87 and NSE = 0.91) domains. In contrast, despite the small size of Wilton Creek (∼233 km2) and the lack of permanent or human-regulated dams, the observed streamflow patterns displayed considerably delayed response to extreme precipitation events which posed challenges in achieving satisfactory model performance. Field evidence suggests that model residual variability is driven by excessive surface storage of water, the presence of beaver dams and narrowing of the stream channels under the bridges, which could potentially delay the flow of water for many days. After delineating the areas of flooding and treating them as reservoirs in Wilton Creek, we were able to overcome the modelling challenges with minor modifications in the original SWAT configuration and achieve satisfactory fit for both the calibration (NSE = 0.55 and NSE = 0.73) and validation (NSE = 0.59 and NSE = 0.76) periods. Our study suggests that the reservoirs play a significant role in buffering the impact of extreme flow conditions, especially during the spring freshet
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.