Bo Kuang, Yu Zhao, Gang Wang, Chengque Cao, Pengfei Liu
{"title":"Experimental study on onset of nucleate boiling in wide-ranged parameters for narrow rectangular channels","authors":"Bo Kuang, Yu Zhao, Gang Wang, Chengque Cao, Pengfei Liu","doi":"10.1016/j.anucene.2024.110935","DOIUrl":null,"url":null,"abstract":"<div><div>The onset of nucleate boiling (ONB), which marks the emergence of nucleate boiling, is an important transition point in the boiling curve. For exploring the influence of geometric and thermodynamic parameters on ONB in rectangular narrow channels, a detailed experimental study is conducted to investigate ONB under wide range of parameters. The experimental parameters range is pressure of 0.1–5.5 MPa, mass flux of 200–2000 kg/m<sup>2</sup>s, inlet subcooling of 10–150 K. According to the experimental results, the location of ONB is identified based on the axial distribution of wall temperature, and the influence of various parameters on ONB in narrow rectangular channels is analyzed. It is found that heat flux, pressure, mass flux, and the gap size of the channel have a significant impact on ONB. By comparing the computed results of existing correlations, it is evident that there is a deviation, which can be attributed to the narrow range of experimental parameters in previous studies. Finally, a new ONB model is developed based on basic equations proposed by Hsu and the distribution of liquid temperature, taking into account the influence of mass flux and the enhanced heat transfer results from surrounding bubbles to correct the liquid temperature. The new correlation accurately describes the impact of each parameter and is in good agreement with the current experimental results.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645492400598X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The onset of nucleate boiling (ONB), which marks the emergence of nucleate boiling, is an important transition point in the boiling curve. For exploring the influence of geometric and thermodynamic parameters on ONB in rectangular narrow channels, a detailed experimental study is conducted to investigate ONB under wide range of parameters. The experimental parameters range is pressure of 0.1–5.5 MPa, mass flux of 200–2000 kg/m2s, inlet subcooling of 10–150 K. According to the experimental results, the location of ONB is identified based on the axial distribution of wall temperature, and the influence of various parameters on ONB in narrow rectangular channels is analyzed. It is found that heat flux, pressure, mass flux, and the gap size of the channel have a significant impact on ONB. By comparing the computed results of existing correlations, it is evident that there is a deviation, which can be attributed to the narrow range of experimental parameters in previous studies. Finally, a new ONB model is developed based on basic equations proposed by Hsu and the distribution of liquid temperature, taking into account the influence of mass flux and the enhanced heat transfer results from surrounding bubbles to correct the liquid temperature. The new correlation accurately describes the impact of each parameter and is in good agreement with the current experimental results.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.