Correlation inequalities for linear extensions

IF 1.5 1区 数学 Q1 MATHEMATICS
Swee Hong Chan , Igor Pak
{"title":"Correlation inequalities for linear extensions","authors":"Swee Hong Chan ,&nbsp;Igor Pak","doi":"10.1016/j.aim.2024.109954","DOIUrl":null,"url":null,"abstract":"<div><div>We employ the combinatorial atlas technology to prove new correlation inequalities for the number of linear extensions of finite posets. These include the approximate independence of probabilities and expectations of values of random linear extensions, closely related to Stanley's inequality. We also give applications to the numbers of standard Young tableaux and to Euler numbers.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109954"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004699/pdfft?md5=616cbaef7e6c6cceb3d8a76287c928b8&pid=1-s2.0-S0001870824004699-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004699","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We employ the combinatorial atlas technology to prove new correlation inequalities for the number of linear extensions of finite posets. These include the approximate independence of probabilities and expectations of values of random linear extensions, closely related to Stanley's inequality. We also give applications to the numbers of standard Young tableaux and to Euler numbers.
线性扩展的相关不等式
我们利用组合图集技术证明了有限正集线性扩展数的新相关不等式。这些不等式包括随机线性扩展的概率和期望值的近似独立性,与斯坦利不等式密切相关。我们还给出了标准扬台数和欧拉数的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信