Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces

IF 1.5 1区 数学 Q1 MATHEMATICS
Yirui Zhao, Yinqin Li, Dachun Yang, Wen Yuan, Yangyang Zhang
{"title":"Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces","authors":"Yirui Zhao,&nbsp;Yinqin Li,&nbsp;Dachun Yang,&nbsp;Wen Yuan,&nbsp;Yangyang Zhang","doi":"10.1016/j.aim.2024.109957","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, the authors first establish a new characterization of Muckenhoupt weights in terms of oscillations. As an application, the authors give a new characterization of homogeneous ball Banach Sobolev spaces, which extends the elegant characterization of Sobolev spaces obtained by R. L. Frank in 2024 and is a variant of the famous formula obtained by H. Brezis, A. Seeger, J. Van Schaftingen, and P.-L. Yung in 2024 with difference quotients replaced by oscillations. Moreover, the authors also obtain new representation formulae of gradients in terms of oscillations in ball Banach function spaces, which even include the critical case where Frank did not consider. Furthermore, via some counterexamples, we prove that all the main results are sharp. Applying these results, the authors further reveal the mutual equivalences among Muckenhoupt weights, the weighted upper estimate of the characterization of Frank, and the weighted upper estimate of the formula of Brezis et al.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109957"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004729","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the authors first establish a new characterization of Muckenhoupt weights in terms of oscillations. As an application, the authors give a new characterization of homogeneous ball Banach Sobolev spaces, which extends the elegant characterization of Sobolev spaces obtained by R. L. Frank in 2024 and is a variant of the famous formula obtained by H. Brezis, A. Seeger, J. Van Schaftingen, and P.-L. Yung in 2024 with difference quotients replaced by oscillations. Moreover, the authors also obtain new representation formulae of gradients in terms of oscillations in ball Banach function spaces, which even include the critical case where Frank did not consider. Furthermore, via some counterexamples, we prove that all the main results are sharp. Applying these results, the authors further reveal the mutual equivalences among Muckenhoupt weights, the weighted upper estimate of the characterization of Frank, and the weighted upper estimate of the formula of Brezis et al.
穆肯霍普特权重和同质球巴纳赫索波列夫空间的广义弗兰克特性
在本文中,作者首先从振荡的角度建立了穆肯霍普特权重的新表征。作为应用,作者给出了同质球巴纳赫索波列夫空间的新表征,它扩展了弗兰克(R. L. Frank)在 2024 年获得的索波列夫空间的优雅表征,是布雷齐斯(H. Brezis)、西格(A. Seeger)、范沙夫廷根(J. Van Schaftingen)和容永(P.-L. Yung)在 2024 年获得的著名公式的变体,用振荡代替了差商。此外,作者还获得了球巴纳赫函数空间中以振荡表示的梯度的新表示公式,其中甚至包括弗兰克没有考虑的临界情况。此外,通过一些反例,我们证明了所有主要结果都是尖锐的。应用这些结果,作者进一步揭示了穆肯霍普特权重、弗兰克表征的加权上估计值和布雷齐斯等人公式的加权上估计值之间的相互等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信