{"title":"Model-based reinforcement learning approach for federated learning resource allocation and parameter optimization","authors":"Farzan Karami, Babak Hossein Khalaj","doi":"10.1016/j.comcom.2024.107957","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the performance of a model-based approach for solving resource allocation and parameter adjustment problems in federated learning (FL) within a wireless network. Given the existence of models for energy, communication channels, and accuracy, such models can be leveraged to achieve improved performance. Additionally, machine learning techniques can be employed to identify known parts of the model and also exploit training data for unknown parts of the model, enabling the creation of complex policies. Model-based reinforcement learning (RL) methods have the potential to offer such solutions, particularly in resource allocation and parameter optimization settings where the model can be partially derived mathematically. Our results demonstrate that the use of such a method in FL scenarios leads to improvements in both performance and the number of iterations required to identify the desired policy. Our simulations demonstrate the significance of allocating appropriate resources for FL applications through proper consideration of inherent tradeoffs, as performance will not improve beyond a certain saturation point. Additionally, our proposed FL model takes intelligently into account the presence of slow users to propose efficient policies for users that may have access to more abundant resources.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"228 ","pages":"Article 107957"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003049","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the performance of a model-based approach for solving resource allocation and parameter adjustment problems in federated learning (FL) within a wireless network. Given the existence of models for energy, communication channels, and accuracy, such models can be leveraged to achieve improved performance. Additionally, machine learning techniques can be employed to identify known parts of the model and also exploit training data for unknown parts of the model, enabling the creation of complex policies. Model-based reinforcement learning (RL) methods have the potential to offer such solutions, particularly in resource allocation and parameter optimization settings where the model can be partially derived mathematically. Our results demonstrate that the use of such a method in FL scenarios leads to improvements in both performance and the number of iterations required to identify the desired policy. Our simulations demonstrate the significance of allocating appropriate resources for FL applications through proper consideration of inherent tradeoffs, as performance will not improve beyond a certain saturation point. Additionally, our proposed FL model takes intelligently into account the presence of slow users to propose efficient policies for users that may have access to more abundant resources.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.