Anton Vladyka, Eemeli A. Eronen, Johannes Niskanen
{"title":"Implementation of the emulator-based component analysis","authors":"Anton Vladyka, Eemeli A. Eronen, Johannes Niskanen","doi":"10.1016/j.jocs.2024.102437","DOIUrl":null,"url":null,"abstract":"<div><div>We present a PyTorch-powered implementation of the emulator-based component analysis used for ill-posed numerical non-linear inverse problems, where an approximate emulator for the forward problem is known. This emulator may be a numerical model, an interpolating function, or a fitting function such as a neural network. With the help of the emulator and a data set, the method seeks dimensionality reduction by projection in the variable space so that maximal variance of the target (response) values of the data is covered. The obtained basis set for projection in the variable space defines a subspace of the greatest response for the outcome of the forward problem. The method allows for the reconstruction of the coordinates in this subspace for an approximate solution to the inverse problem. We present an example of using the code provided as a Python class.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"83 ","pages":"Article 102437"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877750324002308/pdfft?md5=48eb0727ba0e208a45b58ba3c8f2bac4&pid=1-s2.0-S1877750324002308-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a PyTorch-powered implementation of the emulator-based component analysis used for ill-posed numerical non-linear inverse problems, where an approximate emulator for the forward problem is known. This emulator may be a numerical model, an interpolating function, or a fitting function such as a neural network. With the help of the emulator and a data set, the method seeks dimensionality reduction by projection in the variable space so that maximal variance of the target (response) values of the data is covered. The obtained basis set for projection in the variable space defines a subspace of the greatest response for the outcome of the forward problem. The method allows for the reconstruction of the coordinates in this subspace for an approximate solution to the inverse problem. We present an example of using the code provided as a Python class.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).