{"title":"A context-aware attention and graph neural network-based multimodal framework for misogyny detection","authors":"","doi":"10.1016/j.ipm.2024.103895","DOIUrl":null,"url":null,"abstract":"<div><div>A substantial portion of offensive content on social media is directed towards women. Since the approaches for general offensive content detection face a challenge in detecting misogynistic content, it requires solutions tailored to address offensive content against women. To this end, we propose a novel multimodal framework for the detection of misogynistic and sexist content. The framework comprises three modules: the Multimodal Attention module (MANM), the Graph-based Feature Reconstruction Module (GFRM), and the Content-specific Features Learning Module (CFLM). The MANM employs adaptive gating-based multimodal context-aware attention, enabling the model to focus on relevant visual and textual information and generating contextually relevant features. The GFRM module utilizes graphs to refine features within individual modalities, while the CFLM focuses on learning text and image-specific features such as toxicity features and caption features. Additionally, we curate a set of misogynous lexicons to compute the misogyny-specific lexicon score from the text. We apply test-time augmentation in feature space to better generalize the predictions on diverse inputs. The performance of the proposed approach has been evaluated on two multimodal datasets, MAMI, and MMHS150K, with 11,000 and 13,494 samples, respectively. The proposed method demonstrates an average improvement of 11.87% and 10.82% in macro-F1 over existing multimodal methods on the MAMI and MMHS150K datasets, respectively.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306457324002541/pdfft?md5=d17cb5e20a69f9c766570983bc722abc&pid=1-s2.0-S0306457324002541-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002541","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A substantial portion of offensive content on social media is directed towards women. Since the approaches for general offensive content detection face a challenge in detecting misogynistic content, it requires solutions tailored to address offensive content against women. To this end, we propose a novel multimodal framework for the detection of misogynistic and sexist content. The framework comprises three modules: the Multimodal Attention module (MANM), the Graph-based Feature Reconstruction Module (GFRM), and the Content-specific Features Learning Module (CFLM). The MANM employs adaptive gating-based multimodal context-aware attention, enabling the model to focus on relevant visual and textual information and generating contextually relevant features. The GFRM module utilizes graphs to refine features within individual modalities, while the CFLM focuses on learning text and image-specific features such as toxicity features and caption features. Additionally, we curate a set of misogynous lexicons to compute the misogyny-specific lexicon score from the text. We apply test-time augmentation in feature space to better generalize the predictions on diverse inputs. The performance of the proposed approach has been evaluated on two multimodal datasets, MAMI, and MMHS150K, with 11,000 and 13,494 samples, respectively. The proposed method demonstrates an average improvement of 11.87% and 10.82% in macro-F1 over existing multimodal methods on the MAMI and MMHS150K datasets, respectively.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.