Autodelineation methods in a simulated fully automated proton therapy workflow for esophageal cancer

IF 3.4 Q2 ONCOLOGY
Pieter Populaire , Beatrice Marini , Kenneth Poels , Stina Svensson , Edmond Sterpin , Albin Fredriksson , Karin Haustermans
{"title":"Autodelineation methods in a simulated fully automated proton therapy workflow for esophageal cancer","authors":"Pieter Populaire ,&nbsp;Beatrice Marini ,&nbsp;Kenneth Poels ,&nbsp;Stina Svensson ,&nbsp;Edmond Sterpin ,&nbsp;Albin Fredriksson ,&nbsp;Karin Haustermans","doi":"10.1016/j.phro.2024.100646","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Proton Online Adaptive RadioTherapy (ProtOnART) harnesses the dosimetric advantage of protons and immediately acts upon anatomical changes. Here, we simulate the clinical application of delineation and planning within a ProtOnART-workflow for esophageal cancer. We aim to identify the most appropriate technique for autodelineation and evaluate full automation by replanning on autodelineated contours.</div></div><div><h3>Materials and methods</h3><div>We evaluated 15 patients who started treatment between 11-2022 and 01-2024, undergoing baseline and three repeat computed tomography (CT) scans in treatment position. Quantitative and qualitative evaluations compared different autodelineation methods. For Organs-at-risk (OAR) deep learning segmentation (DLS), rigid and deformable propagation from baseline to repeat CT-scans were considered. For the clinical target volume (CTV), rigid and three deformable propagation methods (default, heart as controlling structure and with focus region) were evaluated. Adaptive treatment plans with 7 mm (ATP<sub>7mm</sub>) and 3 mm (ATP<sub>3mm</sub>) setup robustness were generated using best-performing autodelineated contours. Clinical acceptance of ATPs was evaluated using goals encompassing ground-truth CTV-coverage and OAR-dose.</div></div><div><h3>Results</h3><div>Deformation was preferred for autodelineation of heart, lungs and spinal cord. DLS was preferred for all other OARs. For CTV, deformation with focus region was the preferred method although the difference with other deformation methods was small. Nominal ATPs passed evaluation goals for 87 % of ATP<sub>7mm</sub> and 67 % of ATP<sub>3mm</sub>. This dropped to respectively 2 % and 29 % after robust evaluation. Insufficient CTV-coverage was the main reason for ATP-rejection.</div></div><div><h3>Conclusion</h3><div>Autodelineation aids a ProtOnART-workflow for esophageal cancer. Currently available tools regularly require manual annotations to generate clinically acceptable ATPs.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100646"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001167/pdfft?md5=1b1eb557e68831ef41fd49ccf36d36d0&pid=1-s2.0-S2405631624001167-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Proton Online Adaptive RadioTherapy (ProtOnART) harnesses the dosimetric advantage of protons and immediately acts upon anatomical changes. Here, we simulate the clinical application of delineation and planning within a ProtOnART-workflow for esophageal cancer. We aim to identify the most appropriate technique for autodelineation and evaluate full automation by replanning on autodelineated contours.

Materials and methods

We evaluated 15 patients who started treatment between 11-2022 and 01-2024, undergoing baseline and three repeat computed tomography (CT) scans in treatment position. Quantitative and qualitative evaluations compared different autodelineation methods. For Organs-at-risk (OAR) deep learning segmentation (DLS), rigid and deformable propagation from baseline to repeat CT-scans were considered. For the clinical target volume (CTV), rigid and three deformable propagation methods (default, heart as controlling structure and with focus region) were evaluated. Adaptive treatment plans with 7 mm (ATP7mm) and 3 mm (ATP3mm) setup robustness were generated using best-performing autodelineated contours. Clinical acceptance of ATPs was evaluated using goals encompassing ground-truth CTV-coverage and OAR-dose.

Results

Deformation was preferred for autodelineation of heart, lungs and spinal cord. DLS was preferred for all other OARs. For CTV, deformation with focus region was the preferred method although the difference with other deformation methods was small. Nominal ATPs passed evaluation goals for 87 % of ATP7mm and 67 % of ATP3mm. This dropped to respectively 2 % and 29 % after robust evaluation. Insufficient CTV-coverage was the main reason for ATP-rejection.

Conclusion

Autodelineation aids a ProtOnART-workflow for esophageal cancer. Currently available tools regularly require manual annotations to generate clinically acceptable ATPs.
食管癌全自动质子治疗模拟工作流程中的自动划线方法
背景和目的质子在线自适应放射治疗(ProtOnART)利用质子的剂量学优势,并根据解剖结构的变化立即采取行动。在此,我们模拟了食道癌在 ProtOnART 工作流程中的划线和规划的临床应用。我们的目标是找出最合适的自动划线技术,并通过在自动划线的轮廓上重新扫描来评估全自动化。材料和方法我们评估了在 2022 年 11 月至 2024 年 1 月期间开始治疗的 15 名患者,他们在治疗位置接受了基线和三次重复计算机断层扫描(CT)。定量和定性评估比较了不同的自动划线方法。对于风险器官(OAR)的深度学习分割(DLS),考虑了从基线到重复 CT 扫描的刚性和可变形传播。对于临床靶体积(CTV),评估了刚性和三种可变形传播方法(默认、心脏作为控制结构和有病灶区域)。使用表现最佳的自动划线轮廓生成了具有 7 毫米(ATP7 毫米)和 3 毫米(ATP3 毫米)设置稳健性的自适应治疗计划。使用包含地面真实 CTV 覆盖率和 OAR 剂量的目标对 ATP 的临床接受度进行了评估。对于所有其他 OAR,DLS 更受青睐。对 CTV 而言,虽然与其他变形方法的差异很小,但首选方法是焦点区域变形法。87% 的 ATP7mm 和 67% 的 ATP3mm 标称 ATP 通过了评估目标。经过稳健评估后,这一比例分别降至 2% 和 29%。CTV覆盖率不足是ATP被拒绝的主要原因。目前可用的工具通常需要手动注释才能生成临床上可接受的 ATP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信