{"title":"Artificial intelligence and wealth inequality: A comprehensive empirical exploration of socioeconomic implications","authors":"Marinko Skare , Beata Gavurova , Sanja Blažević Burić","doi":"10.1016/j.techsoc.2024.102719","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a global database on artificial intelligence (AI) capital stock and related AI indicators. Using the data constructed, we investigate the impact of AI and capital stock accumulation on wealth inequality, a dimension not extensively explored in the literature. This study contributes to the growing body of literature on the socioeconomic consequences of AI, with implications for scholars, policymakers, and corporate executives. An innovative database detailing AI capital stock is developed by incorporating data from various sources, including corporate reports, industry databases, and scholarly literature. This novel dataset, focusing on the US, the EU, and Japan from 1995 to 2020, is a critical resource for future investigations. The research methodology is centered on an extended Solow–Swan model, conceptualizing AI as a form of capital that can substitute for or complement traditional forms of labor. A panel-corrected standard errors model is used to analyze the data, accounting for potential cross-sectional dependence and heteroscedasticity. Our findings reveal a positive and statistically significant correlation between AI technology adoption, AI capital stock accumulation, and wealth disparity. The analysis further indicates a complex interaction between income and wealth disparities, suggesting a mutually reinforcing cycle. This study fills a significant gap in the existing literature by offering a novel perspective on the distributional impact of AI. Our results underscore the importance of considering the broader socioeconomic implications of AI, extending beyond considerations of immediate productivity and economic growth. This study offers valuable insights for policy formulation and business decision making, emphasizing the necessity of a comprehensive understanding of the influence of AI on wealth distribution.</div></div>","PeriodicalId":47979,"journal":{"name":"Technology in Society","volume":"79 ","pages":"Article 102719"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Society","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160791X24002677","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL ISSUES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a global database on artificial intelligence (AI) capital stock and related AI indicators. Using the data constructed, we investigate the impact of AI and capital stock accumulation on wealth inequality, a dimension not extensively explored in the literature. This study contributes to the growing body of literature on the socioeconomic consequences of AI, with implications for scholars, policymakers, and corporate executives. An innovative database detailing AI capital stock is developed by incorporating data from various sources, including corporate reports, industry databases, and scholarly literature. This novel dataset, focusing on the US, the EU, and Japan from 1995 to 2020, is a critical resource for future investigations. The research methodology is centered on an extended Solow–Swan model, conceptualizing AI as a form of capital that can substitute for or complement traditional forms of labor. A panel-corrected standard errors model is used to analyze the data, accounting for potential cross-sectional dependence and heteroscedasticity. Our findings reveal a positive and statistically significant correlation between AI technology adoption, AI capital stock accumulation, and wealth disparity. The analysis further indicates a complex interaction between income and wealth disparities, suggesting a mutually reinforcing cycle. This study fills a significant gap in the existing literature by offering a novel perspective on the distributional impact of AI. Our results underscore the importance of considering the broader socioeconomic implications of AI, extending beyond considerations of immediate productivity and economic growth. This study offers valuable insights for policy formulation and business decision making, emphasizing the necessity of a comprehensive understanding of the influence of AI on wealth distribution.
期刊介绍:
Technology in Society is a global journal dedicated to fostering discourse at the crossroads of technological change and the social, economic, business, and philosophical transformation of our world. The journal aims to provide scholarly contributions that empower decision-makers to thoughtfully and intentionally navigate the decisions shaping this dynamic landscape. A common thread across these fields is the role of technology in society, influencing economic, political, and cultural dynamics. Scholarly work in Technology in Society delves into the social forces shaping technological decisions and the societal choices regarding technology use. This encompasses scholarly and theoretical approaches (history and philosophy of science and technology, technology forecasting, economic growth, and policy, ethics), applied approaches (business innovation, technology management, legal and engineering), and developmental perspectives (technology transfer, technology assessment, and economic development). Detailed information about the journal's aims and scope on specific topics can be found in Technology in Society Briefings, accessible via our Special Issues and Article Collections.