Jiwei Geng , Yugang Li , Peikang Xia , Feifei Wang , Cunjuan Xia , Dong Chen , Mingliang Wang , Haowei Wang
{"title":"Enhancing fatigue crack propagation resistance of heterostructured Al composites and multistage crack mechanisms","authors":"Jiwei Geng , Yugang Li , Peikang Xia , Feifei Wang , Cunjuan Xia , Dong Chen , Mingliang Wang , Haowei Wang","doi":"10.1016/j.ijplas.2024.104136","DOIUrl":null,"url":null,"abstract":"<div><div>High tensile strength and low fatigue crack propagation (FCP) rate are hard to achieve simultaneously in aluminium (Al) based materials, which has been a long-lasting topic. It is because the traditional strengthening mechanisms may lead to the increase in FCP rate. In this work, we developed dual-level heterostructures by incorporating the <em>in-situ</em> synthesized TiB<sub>2</sub> particles into Al matrix, to create particle-lean zones (PLZs) and particle-rich zones (PRZs) by extrusion. Fine grains were introduced by particle-associated local recrystallization in PRZs. By means of particle and grain size distribution, a heterostructured Al composite featuring with the coarse grains in PLZs and fine grains in PRZs was fabricated. It was found that simultaneous enhancement of both the strength and FCP resistance of Al composite was achieved through the development of heterostructures. During FCP, the PRZs can retard the growth of slip bands and increase crack deflection frequency while the PLZs increase the crack deflection distance and plastic deformation capability at crack tip. The fracture behavior of composite during FCP depended on grain characteristics, particles and stress intensity range. The detailed cracking behavior for typical <100><sub>Al</sub> and <111><sub>Al</sub> grains in different FCP stages was identified. The associated models were developed for different FCP behaviors. Particularly, the quantitative relationship between Pairs parameters and microstructure features was established, which was critical to understand fatigue properties of Al composite reinforced by small particles. These findings can provide a strategy to design metal materials with an excellent combination of both static and dynamic mechanical properties.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"182 ","pages":"Article 104136"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High tensile strength and low fatigue crack propagation (FCP) rate are hard to achieve simultaneously in aluminium (Al) based materials, which has been a long-lasting topic. It is because the traditional strengthening mechanisms may lead to the increase in FCP rate. In this work, we developed dual-level heterostructures by incorporating the in-situ synthesized TiB2 particles into Al matrix, to create particle-lean zones (PLZs) and particle-rich zones (PRZs) by extrusion. Fine grains were introduced by particle-associated local recrystallization in PRZs. By means of particle and grain size distribution, a heterostructured Al composite featuring with the coarse grains in PLZs and fine grains in PRZs was fabricated. It was found that simultaneous enhancement of both the strength and FCP resistance of Al composite was achieved through the development of heterostructures. During FCP, the PRZs can retard the growth of slip bands and increase crack deflection frequency while the PLZs increase the crack deflection distance and plastic deformation capability at crack tip. The fracture behavior of composite during FCP depended on grain characteristics, particles and stress intensity range. The detailed cracking behavior for typical <100>Al and <111>Al grains in different FCP stages was identified. The associated models were developed for different FCP behaviors. Particularly, the quantitative relationship between Pairs parameters and microstructure features was established, which was critical to understand fatigue properties of Al composite reinforced by small particles. These findings can provide a strategy to design metal materials with an excellent combination of both static and dynamic mechanical properties.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.