Smart Polymer Solution and Thermal Conductivity: How Important Is an Exact Polymer Conformation?

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Mokter M. Chowdhury, Robinson Cortes-Huerto, Debashish Mukherji
{"title":"Smart Polymer Solution and Thermal Conductivity: How Important Is an Exact Polymer Conformation?","authors":"Mokter M. Chowdhury, Robinson Cortes-Huerto, Debashish Mukherji","doi":"10.1021/acs.macromol.4c01675","DOIUrl":null,"url":null,"abstract":"Heat management in devices is the key to their efficiency and longevity. Here, thermal switches (TS) are of great importance because of their ability to transition between different thermal conductivity κ states. While traditional TS are bulky and slow, recent experiments have suggested “smart” responsive (bioinspired) polymers as their fast alternatives. One example is poly(<i>N</i>-isopropylacrylamide) (PNIPAM) in water, where κ drops suddenly around a temperature <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi mathvariant=\"script\"&gt;l&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 1.139em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.366em, 1001.03em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.185em, 1000.68em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑇<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.116em;\"></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Script-italic;\">𝓁</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.003em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi mathvariant=\"script\">l</mi></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><msub><mi>T</mi><mi mathvariant=\"script\">l</mi></msub></math></script> ≃ 305 K when PNIPAM undergoes a coil-to-globule transition. At first glance, this may suggest that the change in polymer conformation has a direct influence on TS. However, it may be presumptuous to trivially “only” link conformations with TS, especially because many complex microscopic details control macroscopic conformational transition. Motivated by this, we study TS in “smart” polymers using generic molecular dynamics simulations. As the test cases, we investigate two different modes of polymer collapse using external stimuli, i.e., changing <i>T</i> and cosolvent mole fraction <i>x</i><sub>c</sub>. Collapse upon increasing <i>T</i> shows a direct correlation between the conformation and κ switching, while no correlation is observed in the latter case. These results suggest that the (co)solvent–monomer interactions play a greater important role than the exact conformation in dictating TS. While some results are compared with the available experiments, possible future directions are also highlighted.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"34 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Heat management in devices is the key to their efficiency and longevity. Here, thermal switches (TS) are of great importance because of their ability to transition between different thermal conductivity κ states. While traditional TS are bulky and slow, recent experiments have suggested “smart” responsive (bioinspired) polymers as their fast alternatives. One example is poly(N-isopropylacrylamide) (PNIPAM) in water, where κ drops suddenly around a temperature Tl ≃ 305 K when PNIPAM undergoes a coil-to-globule transition. At first glance, this may suggest that the change in polymer conformation has a direct influence on TS. However, it may be presumptuous to trivially “only” link conformations with TS, especially because many complex microscopic details control macroscopic conformational transition. Motivated by this, we study TS in “smart” polymers using generic molecular dynamics simulations. As the test cases, we investigate two different modes of polymer collapse using external stimuli, i.e., changing T and cosolvent mole fraction xc. Collapse upon increasing T shows a direct correlation between the conformation and κ switching, while no correlation is observed in the latter case. These results suggest that the (co)solvent–monomer interactions play a greater important role than the exact conformation in dictating TS. While some results are compared with the available experiments, possible future directions are also highlighted.

Abstract Image

智能聚合物溶液和导热性:精确的聚合物构型有多重要?
设备的热管理是其效率和寿命的关键。在这方面,热开关(TS)因其在不同热导率 κ 状态之间转换的能力而具有重要意义。传统的热开关体积大、速度慢,而最近的实验表明,"智能 "响应(生物启发)聚合物可作为其快速替代品。其中一个例子是水中的聚(N-异丙基丙烯酰胺)(PNIPAM),当 PNIPAM 经历线圈到球体的转变时,κ 在温度 𝑇𝓁TlTl ≃ 305 K 附近突然下降。乍一看,这可能表明聚合物构象的变化对 TS 有直接影响。然而,将构象 "仅仅 "与 TS 联系起来可能有些冒昧,尤其是因为许多复杂的微观细节控制着宏观构象转变。受此启发,我们利用通用分子动力学模拟研究了 "智能 "聚合物中的 TS。作为测试案例,我们利用外部刺激(即改变 T 和共溶剂分子分数 xc)研究了聚合物塌缩的两种不同模式。T 升高时的塌缩显示了构象和 κ 切换之间的直接相关性,而在后一种情况下则观察不到相关性。这些结果表明,在决定 TS 的过程中,(共)溶剂与单体之间的相互作用比确切的构象起着更重要的作用。在将一些结果与现有实验进行比较的同时,还强调了未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信