Fangting Zhou , Ala Arvidsson , Jiaming Wu , Balázs Kulcsár
{"title":"Collaborative electric vehicle routing with meet points","authors":"Fangting Zhou , Ala Arvidsson , Jiaming Wu , Balázs Kulcsár","doi":"10.1016/j.commtr.2024.100135","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a profit-sharing-based optimal routing mechanism to incentivize horizontal collaboration among urban goods distributors. The core of this mechanism is based on exchanging goods at meet points, which is optimally planned en route. We propose a Collaborative Electric Vehicle Routing Problem with Meet Points (CoEVRPMP) considering constraints such as time windows, opportunity charging, and meet-point synchronization. The proposed CoEVRPMP is formulated as a mixed-integer nonlinear programming model. We present an exact method via branching and a matheuristic that combines adaptive large neighborhood search with linear programming. The viability and scalability of the collaborative method are demonstrated through numerical case studies, including a real-world case and a large-scale experiment with up to 500 customers. The findings underscore the significance of horizontal collaboration among delivery companies in attaining both higher individual profits and lower total costs. Moreover, collaboration helps to reduce the environmental footprint by decreasing travel distance.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772424724000180/pdfft?md5=483104cc66217184d47dccaf267f5baf&pid=1-s2.0-S2772424724000180-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424724000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop a profit-sharing-based optimal routing mechanism to incentivize horizontal collaboration among urban goods distributors. The core of this mechanism is based on exchanging goods at meet points, which is optimally planned en route. We propose a Collaborative Electric Vehicle Routing Problem with Meet Points (CoEVRPMP) considering constraints such as time windows, opportunity charging, and meet-point synchronization. The proposed CoEVRPMP is formulated as a mixed-integer nonlinear programming model. We present an exact method via branching and a matheuristic that combines adaptive large neighborhood search with linear programming. The viability and scalability of the collaborative method are demonstrated through numerical case studies, including a real-world case and a large-scale experiment with up to 500 customers. The findings underscore the significance of horizontal collaboration among delivery companies in attaining both higher individual profits and lower total costs. Moreover, collaboration helps to reduce the environmental footprint by decreasing travel distance.