Peng Yu , Xiaopeng He , Haoyu Li , Haowen Dou , Yeyu Tan , Hao Wu , Badong Chen
{"title":"FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition","authors":"Peng Yu , Xiaopeng He , Haoyu Li , Haowen Dou , Yeyu Tan , Hao Wu , Badong Chen","doi":"10.1016/j.bspc.2024.106912","DOIUrl":null,"url":null,"abstract":"<div><div>Emotion recognition is significant in brain-computer interface (BCI) applications. Electroencephalography (EEG) is extensively employed for emotion recognition because of its precise temporal resolution and dependability. However, EEG signals are variable across subjects and sessions, limiting the effectiveness of emotion recognition methods on new users. To address this problem, multi-source domain adaptation was introduced to EEG emotion recognition. Actually, for cross-subject and cross-session emotion recognition methods, there are two most important aspects: extracting features relevant to the emotion recognition task and aligning the features of labeled subjects or sessions(source domains) with those of the unlabeled subject or session(target domain). In this study, we propose a Fine-grained Mutual Learning Adaptation Network (FMLAN) to make innovative improvements in these two aspects. Specifically, we establish multiple separate domain adaptation sub-networks, each corresponding to a specific source domain. Additionally, we introduce a single joint domain adaptation sub-network that combines multiple source domains together. For EEG emotion recognition, we introduce mutual learning for the first time to connect separate domain adaptation networks and joint domain adaptation sub-network. This facilitates the transfer of complementary information between different domains, enabling each sub-network to extract more comprehensive and robust features. Additionally, we design a novel Fine-grained Alignment Module (FAM), which takes category and decision boundary information into account during the feature alignment, ensuring more accurate alignment. Extensive experiments on SEED and SEED-IV datasets demonstrate that our approach outperforms state-of-the-art methods in performance.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424009704","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Emotion recognition is significant in brain-computer interface (BCI) applications. Electroencephalography (EEG) is extensively employed for emotion recognition because of its precise temporal resolution and dependability. However, EEG signals are variable across subjects and sessions, limiting the effectiveness of emotion recognition methods on new users. To address this problem, multi-source domain adaptation was introduced to EEG emotion recognition. Actually, for cross-subject and cross-session emotion recognition methods, there are two most important aspects: extracting features relevant to the emotion recognition task and aligning the features of labeled subjects or sessions(source domains) with those of the unlabeled subject or session(target domain). In this study, we propose a Fine-grained Mutual Learning Adaptation Network (FMLAN) to make innovative improvements in these two aspects. Specifically, we establish multiple separate domain adaptation sub-networks, each corresponding to a specific source domain. Additionally, we introduce a single joint domain adaptation sub-network that combines multiple source domains together. For EEG emotion recognition, we introduce mutual learning for the first time to connect separate domain adaptation networks and joint domain adaptation sub-network. This facilitates the transfer of complementary information between different domains, enabling each sub-network to extract more comprehensive and robust features. Additionally, we design a novel Fine-grained Alignment Module (FAM), which takes category and decision boundary information into account during the feature alignment, ensuring more accurate alignment. Extensive experiments on SEED and SEED-IV datasets demonstrate that our approach outperforms state-of-the-art methods in performance.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.