Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minhaj Uddin Mahmood Siddique , I.M. Nazmul
{"title":"Static bending analysis of BDFG nanobeams by nonlocal couple stress theory and nonlocal strain gradient theory","authors":"Minhaj Uddin Mahmood Siddique ,&nbsp;I.M. Nazmul","doi":"10.1016/j.finmec.2024.100289","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents analytical solutions for the bending behavior of bi-directional functionally graded (BDFG) micro and nanobeams, wherein the material properties vary along both the thickness and axial directions, following power-law and exponential-law profiles, respectively. This study employs two size-dependent theories, nonlocal modified couple stress theory (NCST) and nonlocal strain gradient theory (NSGT), to account for size effects inherent in nanoscale structures. The governing differential equations are derived using Hamilton's principle, and the Laplace transform technique is utilized for their solution. The study critically compares the size effects captured by NCST and NSGT and assesses the influence of material gradation parameters in both directions. Additionally, the impacts of nonlocal and length scale parameters are thoroughly investigated. The findings indicate that NSGT tends to overestimate size effects compared to NCST. This research enhances the understanding of the mechanical behavior of BDFG nanobeams, offering valuable insights for the design and analysis of nanoscale structures across diverse applications.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000350/pdfft?md5=2071d7bdfb7674d4acc2d527c01d7d39&pid=1-s2.0-S2666359724000350-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents analytical solutions for the bending behavior of bi-directional functionally graded (BDFG) micro and nanobeams, wherein the material properties vary along both the thickness and axial directions, following power-law and exponential-law profiles, respectively. This study employs two size-dependent theories, nonlocal modified couple stress theory (NCST) and nonlocal strain gradient theory (NSGT), to account for size effects inherent in nanoscale structures. The governing differential equations are derived using Hamilton's principle, and the Laplace transform technique is utilized for their solution. The study critically compares the size effects captured by NCST and NSGT and assesses the influence of material gradation parameters in both directions. Additionally, the impacts of nonlocal and length scale parameters are thoroughly investigated. The findings indicate that NSGT tends to overestimate size effects compared to NCST. This research enhances the understanding of the mechanical behavior of BDFG nanobeams, offering valuable insights for the design and analysis of nanoscale structures across diverse applications.
利用非局部耦合应力理论和非局部应变梯度理论对 BDFG 纳米梁进行静态弯曲分析
本文提出了双向功能分级(BDFG)微梁和纳米梁弯曲行为的分析解决方案,其中材料特性沿厚度和轴向方向变化,分别遵循幂律和指数律曲线。本研究采用了非局部修正耦合应力理论(NCST)和非局部应变梯度理论(NSGT)这两种与尺寸相关的理论,来解释纳米级结构中固有的尺寸效应。利用汉密尔顿原理推导出控制微分方程,并利用拉普拉斯变换技术进行求解。研究对 NCST 和 NSGT 所捕捉到的尺寸效应进行了批判性比较,并评估了两个方向上材料分级参数的影响。此外,还深入研究了非局部参数和长度尺度参数的影响。研究结果表明,与 NCST 相比,NSGT 往往会高估尺寸效应。这项研究加深了人们对 BDFG 纳米梁机械行为的理解,为设计和分析各种应用中的纳米结构提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信