{"title":"Experimental and computational investigations of flexible membrane nano rotors in hover","authors":"","doi":"10.1016/j.ast.2024.109583","DOIUrl":null,"url":null,"abstract":"<div><div>With reduced size, the flight Reynolds number of the nano rotor decreases, leading to a sharp drop in the aerodynamic efficiency of the nano rotor. Therefore, improving the aerodynamic performance of the nano rotor at low Reynolds numbers through flow control methods becomes imperative. In this study, from the perspective of bionics, flexible materials are employed in nano rotor design. Seven different layouts of flexible membrane rotor blades are designed and fabricated. The influence of leading and trailing edge flexibility, as well as membrane occupancy ratio on rotor blade propulsion characteristics, is explored through propulsion performance tests in hover.</div><div>Results show that among several layouts proposed in this study, the layout with both reinforced leading and trailing edges of the flexible membrane nano rotor blade exhibits excellent propulsive performance. However, the propulsion performance of the flexible membrane rotors doesn't vary linearly with the ratio of membrane area to the whole rotor area. The appropriate ratio or flexibility can increase the propulsive performance of the rotor, especially at medium and high collective angles. At 7000 RPM and a 20° collective angle, the Figure of Merit of the flexible membrane nano rotor increases up to 4.2% when comparing with the nano rotor without membrane. This improvement becomes more significant with higher collective angles. The structural natural vibration characteristics of each flexible membrane with different layouts are analyzed through modal tests, ensuring the accuracy of the finite element model for flexible membrane rotors. Numerical analysis of the fluid-structure coupling of a flexible membrane rotor with different layouts indicates that rotor structural vibrations is highly consistent with fluctuation of aerodynamic parameters. The deformation of the flexible membrane under aerodynamic forces enhances local blade camber, but reduces angles of attack. This, subsequently, minimizes the size of laminar separation bubbles and the intensity of the blade tip vortices at high collective angles. Consequently, rotor power coefficients decrease, and overall aerodynamic performance improves.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007120","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
With reduced size, the flight Reynolds number of the nano rotor decreases, leading to a sharp drop in the aerodynamic efficiency of the nano rotor. Therefore, improving the aerodynamic performance of the nano rotor at low Reynolds numbers through flow control methods becomes imperative. In this study, from the perspective of bionics, flexible materials are employed in nano rotor design. Seven different layouts of flexible membrane rotor blades are designed and fabricated. The influence of leading and trailing edge flexibility, as well as membrane occupancy ratio on rotor blade propulsion characteristics, is explored through propulsion performance tests in hover.
Results show that among several layouts proposed in this study, the layout with both reinforced leading and trailing edges of the flexible membrane nano rotor blade exhibits excellent propulsive performance. However, the propulsion performance of the flexible membrane rotors doesn't vary linearly with the ratio of membrane area to the whole rotor area. The appropriate ratio or flexibility can increase the propulsive performance of the rotor, especially at medium and high collective angles. At 7000 RPM and a 20° collective angle, the Figure of Merit of the flexible membrane nano rotor increases up to 4.2% when comparing with the nano rotor without membrane. This improvement becomes more significant with higher collective angles. The structural natural vibration characteristics of each flexible membrane with different layouts are analyzed through modal tests, ensuring the accuracy of the finite element model for flexible membrane rotors. Numerical analysis of the fluid-structure coupling of a flexible membrane rotor with different layouts indicates that rotor structural vibrations is highly consistent with fluctuation of aerodynamic parameters. The deformation of the flexible membrane under aerodynamic forces enhances local blade camber, but reduces angles of attack. This, subsequently, minimizes the size of laminar separation bubbles and the intensity of the blade tip vortices at high collective angles. Consequently, rotor power coefficients decrease, and overall aerodynamic performance improves.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.