New operator realization of angular momentum for description of electron's motion in uniform magnetic field

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Cheng Da , Hony-Yi Fan
{"title":"New operator realization of angular momentum for description of electron's motion in uniform magnetic field","authors":"Cheng Da ,&nbsp;Hony-Yi Fan","doi":"10.1016/S0034-4877(24)00058-2","DOIUrl":null,"url":null,"abstract":"<div><div>By introducing appropriate electron's coordinate eigenstate and momentum eigenstate we propose new realization of angular momentum operators for describing electron's motion in uniform magnetic field. The coordinate eigenstates make up a representation and embody quantum entanglement between magnetic field and electron. The eigenstate of angular momentum's lowering-ascending operator <strong><em>L</em><sub>±</sub></strong> are derived, the way we tackle this problem is to make an analogue between the transform\n<span><math><mrow><msup><mi>e</mi><mrow><mn>2</mn><mi>f</mi><msub><mi>L</mi><mi>z</mi></msub></mrow></msup><msub><mi>L</mi><mo>±</mo></msub><msup><mi>e</mi><mrow><mo>-</mo><mn>2</mn><mi>f</mi><msub><mi>L</mi><mi>z</mi></msub></mrow></msup></mrow></math></span> to the squeezing mechanism. All these discussions reveal that the quantum theory for charged particles' motion in magnetic field needs to be developed.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 105-115"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000582","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

By introducing appropriate electron's coordinate eigenstate and momentum eigenstate we propose new realization of angular momentum operators for describing electron's motion in uniform magnetic field. The coordinate eigenstates make up a representation and embody quantum entanglement between magnetic field and electron. The eigenstate of angular momentum's lowering-ascending operator L± are derived, the way we tackle this problem is to make an analogue between the transform e2fLzL±e-2fLz to the squeezing mechanism. All these discussions reveal that the quantum theory for charged particles' motion in magnetic field needs to be developed.
描述电子在匀强磁场中运动的角动量新算子实现方法
通过引入适当的电子坐标特征态和动量特征态,我们提出了描述电子在均匀磁场中运动的角动量算子的新实现方式。坐标特征态构成了磁场与电子之间的量子纠缠。角动量的降低-上升算子 L± 的特征状态被推导出来,我们解决这个问题的方法是将 Transforme2fLzL±e-2fLz 与挤压机制进行类比。所有这些讨论揭示了带电粒子在磁场中运动的量子理论有待发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信