Yanyan Huang , Hongwu Lei , Jin Na , Yilong Yuan , Hailong Tian
{"title":"Investigations of the impact of geothermal water reinjection on water-rock interaction through laboratory experiments and numerical simulations","authors":"Yanyan Huang , Hongwu Lei , Jin Na , Yilong Yuan , Hailong Tian","doi":"10.1016/j.apgeochem.2024.106180","DOIUrl":null,"url":null,"abstract":"<div><div>In the quest for sustainable geothermal energy production, the adoption of geothermal reinjection technology has become a crucial element in the development of geothermal resources. However, the processes of injection and extraction can lead to interactions between water and rock within the geothermal reservoir, resulting in pore blockage. This study focuses on the Kaifeng Zhenyu Garden geothermal field as a case study to examine the water-rock interactions that occur during geothermal reinjection, as well as the subsequent changes in mineral composition and porosity within the reservoir. The findings reveal that the primary minerals undergoing dissolution are dolomite and feldspar, with the precipitation of calcite and clay minerals following suit. Additionally, results from field simulations corroborate that dolomite and feldspar are the main minerals dissolving, accompanied by the precipitation of calcite and illite. Notably, significant changes in mineral dissolution and precipitation near the geothermal well have led to a slight reduction in the reservoir's porosity. This investigation provides valuable insights into the water-rock interactions involved in geothermal reinjection processes across various geothermal fields.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106180"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292724002853","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the quest for sustainable geothermal energy production, the adoption of geothermal reinjection technology has become a crucial element in the development of geothermal resources. However, the processes of injection and extraction can lead to interactions between water and rock within the geothermal reservoir, resulting in pore blockage. This study focuses on the Kaifeng Zhenyu Garden geothermal field as a case study to examine the water-rock interactions that occur during geothermal reinjection, as well as the subsequent changes in mineral composition and porosity within the reservoir. The findings reveal that the primary minerals undergoing dissolution are dolomite and feldspar, with the precipitation of calcite and clay minerals following suit. Additionally, results from field simulations corroborate that dolomite and feldspar are the main minerals dissolving, accompanied by the precipitation of calcite and illite. Notably, significant changes in mineral dissolution and precipitation near the geothermal well have led to a slight reduction in the reservoir's porosity. This investigation provides valuable insights into the water-rock interactions involved in geothermal reinjection processes across various geothermal fields.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.