{"title":"Mating quadratic maps with the modular group III: The modular Mandelbrot set","authors":"Shaun Bullett , Luna Lomonaco","doi":"10.1016/j.aim.2024.109956","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that there exists a homeomorphism <em>χ</em> between the connectedness locus <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> for the family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> of <span><math><mo>(</mo><mn>2</mn><mo>:</mo><mn>2</mn><mo>)</mo></math></span> holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The homeomorphism <em>χ</em> is dynamical (<span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a mating between <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msub></math></span>), it is conformal on the interior of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span>, and it extends to a homeomorphism between suitably defined neighbourhoods in the respective one parameter moduli spaces.</div><div>Following the recent proof by Petersen and Roesch that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is homeomorphic to the classical Mandelbrot set <span><math><mi>M</mi></math></span>, we deduce that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> is homeomorphic to <span><math><mi>M</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109956"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004717","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that there exists a homeomorphism χ between the connectedness locus for the family of holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set . The homeomorphism χ is dynamical ( is a mating between and ), it is conformal on the interior of , and it extends to a homeomorphism between suitably defined neighbourhoods in the respective one parameter moduli spaces.
Following the recent proof by Petersen and Roesch that is homeomorphic to the classical Mandelbrot set , we deduce that is homeomorphic to .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.