Mating quadratic maps with the modular group III: The modular Mandelbrot set

IF 1.5 1区 数学 Q1 MATHEMATICS
Shaun Bullett , Luna Lomonaco
{"title":"Mating quadratic maps with the modular group III: The modular Mandelbrot set","authors":"Shaun Bullett ,&nbsp;Luna Lomonaco","doi":"10.1016/j.aim.2024.109956","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that there exists a homeomorphism <em>χ</em> between the connectedness locus <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> for the family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> of <span><math><mo>(</mo><mn>2</mn><mo>:</mo><mn>2</mn><mo>)</mo></math></span> holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The homeomorphism <em>χ</em> is dynamical (<span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> is a mating between <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></msub></math></span>), it is conformal on the interior of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span>, and it extends to a homeomorphism between suitably defined neighbourhoods in the respective one parameter moduli spaces.</div><div>Following the recent proof by Petersen and Roesch that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is homeomorphic to the classical Mandelbrot set <span><math><mi>M</mi></math></span>, we deduce that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> is homeomorphic to <span><math><mi>M</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109956"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004717","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that there exists a homeomorphism χ between the connectedness locus MΓ for the family Fa of (2:2) holomorphic correspondences introduced by Bullett and Penrose, and the parabolic Mandelbrot set M1. The homeomorphism χ is dynamical (Fa is a mating between PSL(2,Z) and Pχ(a)), it is conformal on the interior of MΓ, and it extends to a homeomorphism between suitably defined neighbourhoods in the respective one parameter moduli spaces.
Following the recent proof by Petersen and Roesch that M1 is homeomorphic to the classical Mandelbrot set M, we deduce that MΓ is homeomorphic to M.
将二次方程图与模态群结合起来 III:模态曼德布罗特集
我们证明了布尔利特和彭罗斯引入的 (2:2) 全形对应系 Fa 的连通性位置 MΓ 与抛物线曼德尔布罗特集 M1 之间存在同构关系 χ。同构 χ 是动态的(Fa 是 PSL(2,Z) 和 Pχ(a) 之间的配位),它在 MΓ 的内部是保角的,并扩展为各自一参数模空间中适当定义的邻域之间的同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信