Application of instantaneous invariants to Cardan positions for two parameters complex plane motion

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Soley Ersoy , Kemal Eren , Ettore Pennestri
{"title":"Application of instantaneous invariants to Cardan positions for two parameters complex plane motion","authors":"Soley Ersoy ,&nbsp;Kemal Eren ,&nbsp;Ettore Pennestri","doi":"10.1016/j.mechmachtheory.2024.105798","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to represent the Cardan position in the complex plane using Bottema’s instantaneous invariants for two parameters motions. The study provides unchanging and simple quantities that simplify the analysis of complicated mechanical systems by determining complex number representations of Bottema’s instantaneous invariants for Cardan motions with two parameters. The method involves illustrating invariants based on two parameters in the complex plane, defining cycloidal and Cardan motions of two parameters, and deriving the conditions for the Cardan positions. The key results are the necessary and sufficient conditions for the Cardan position for two-parameter motions in the complex plane obtained based on these instantaneous invariants.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105798"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002258","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to represent the Cardan position in the complex plane using Bottema’s instantaneous invariants for two parameters motions. The study provides unchanging and simple quantities that simplify the analysis of complicated mechanical systems by determining complex number representations of Bottema’s instantaneous invariants for Cardan motions with two parameters. The method involves illustrating invariants based on two parameters in the complex plane, defining cycloidal and Cardan motions of two parameters, and deriving the conditions for the Cardan positions. The key results are the necessary and sufficient conditions for the Cardan position for two-parameter motions in the complex plane obtained based on these instantaneous invariants.
将瞬时不变式应用于双参数复平面运动的卡丹位置
本文旨在使用双参数运动的 Bottema 瞬时不变量来表示复平面中的万向位置。该研究通过确定双参数卡丹运动的 Bottema 瞬时不变量的复数表示,提供了不变的简单量,从而简化了复杂机械系统的分析。该方法包括在复平面上说明基于两个参数的不变量,定义两个参数的摆线运动和卡丹运动,并推导出卡丹位置的条件。主要结果是基于这些瞬时不变式得到的复平面内双参数运动的卡丹位置的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信