{"title":"Combining clinical and molecular data for personalized treatment in acute myeloid leukemia: A machine learning approach","authors":"","doi":"10.1016/j.cmpb.2024.108432","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>The standard of care in <em>Acute Myeloid Leukemia</em> patients has remained essentially unchanged for nearly 40 years. Due to the complicated mutational patterns within and between individual patients and a lack of targeted agents for most mutational events, implementing individualized treatment for AML has proven difficult. We reanalysed the <em>BeatAML dataset</em> employing <em>Machine Learning algorithms</em>. The BeatAML project entails patients extensively characterized at the molecular and clinical levels and linked to drug sensitivity outputs. Our approach capitalizes on the molecular and clinical data provided by the <em>BeatAML dataset</em> to predict the <em>ex vivo</em> drug sensitivity for the 122 drugs evaluated by the project.</div></div><div><h3>Methods</h3><div>We utilized ElasticNet, which produces fully interpretable models, in combination with a two-step training protocol that allowed us to narrow down computations. We automated the genes’ filtering step by employing two metrics, and we evaluated all possible data combinations to identify the best training configuration settings per drug.</div></div><div><h3>Results</h3><div>We report a Pearson correlation across all drugs of 0.36 when clinical and RNA sequencing data were combined, with the best-performing models reaching a Pearson correlation of 0.67. When we trained using the datasets in isolation, we noted that RNA Sequencing data (Pearson: 0.36) attained three times the predictive power of whole exome sequencing data (Pearson: 0.11), with clinical data falling somewhere in between (Pearson 0.26). Lastly, we present a paradigm of clinical significance. We used our models’ prediction as a <em>drug sensitivity score</em> to rank an individual's expected response to treatment. We identified 78 patients out of 89 (88 %) that the proposed drug was more potent than the administered one based on their <em>ex vivo</em> drug sensitivity data.</div></div><div><h3>Conclusions</h3><div>In conclusion, our reanalysis of the BeatAML dataset using Machine Learning algorithms demonstrates the potential for individualized treatment prediction in Acute Myeloid Leukemia patients, addressing the longstanding challenge of treatment personalization in this disease. By leveraging molecular and clinical data, our approach yields promising correlations between predicted drug sensitivity and actual responses, highlighting a significant step forward in improving therapeutic outcomes for AML patients.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169260724004255/pdfft?md5=2452e4d62b109d4cc19e47265be2ee8e&pid=1-s2.0-S0169260724004255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004255","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
The standard of care in Acute Myeloid Leukemia patients has remained essentially unchanged for nearly 40 years. Due to the complicated mutational patterns within and between individual patients and a lack of targeted agents for most mutational events, implementing individualized treatment for AML has proven difficult. We reanalysed the BeatAML dataset employing Machine Learning algorithms. The BeatAML project entails patients extensively characterized at the molecular and clinical levels and linked to drug sensitivity outputs. Our approach capitalizes on the molecular and clinical data provided by the BeatAML dataset to predict the ex vivo drug sensitivity for the 122 drugs evaluated by the project.
Methods
We utilized ElasticNet, which produces fully interpretable models, in combination with a two-step training protocol that allowed us to narrow down computations. We automated the genes’ filtering step by employing two metrics, and we evaluated all possible data combinations to identify the best training configuration settings per drug.
Results
We report a Pearson correlation across all drugs of 0.36 when clinical and RNA sequencing data were combined, with the best-performing models reaching a Pearson correlation of 0.67. When we trained using the datasets in isolation, we noted that RNA Sequencing data (Pearson: 0.36) attained three times the predictive power of whole exome sequencing data (Pearson: 0.11), with clinical data falling somewhere in between (Pearson 0.26). Lastly, we present a paradigm of clinical significance. We used our models’ prediction as a drug sensitivity score to rank an individual's expected response to treatment. We identified 78 patients out of 89 (88 %) that the proposed drug was more potent than the administered one based on their ex vivo drug sensitivity data.
Conclusions
In conclusion, our reanalysis of the BeatAML dataset using Machine Learning algorithms demonstrates the potential for individualized treatment prediction in Acute Myeloid Leukemia patients, addressing the longstanding challenge of treatment personalization in this disease. By leveraging molecular and clinical data, our approach yields promising correlations between predicted drug sensitivity and actual responses, highlighting a significant step forward in improving therapeutic outcomes for AML patients.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.