{"title":"A latent representation of brain networks based on EEG⁎","authors":"Lucia Falconi , Giulia Cisotto , Mattia Zorzi","doi":"10.1016/j.ifacol.2024.08.564","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG) is one of the most popular techniques to investigate normal as well as pathological cerebral mechanisms, as it allows to measure, non-invasively and in real-time, the brain activity. However, modeling EEG is still extremely challenging, because of its high-dimensionality, low signal-to-noise ratio, and high individual variability. This paper proposes a novel latent representation to study brain networks using EEG by means of a robust dynamic factor analysis (RDFA) approach. We investigate the ability of this latent representation to discriminate between two groups of subjects, i.e. alcoholic and healthy.</div><div>By RDFA, we can extract a limited number of highly explanatory factors, as low as 8, significantly discriminating between the two groups. Also, we show that different brain patterns can be identified across different stimulation scenarios and EEG locations. Although preliminary, this work could give support to domain experts while providing some clinically-meaningful insights to identify common patterns as well as individual characteristics in different groups of healthy and pathological subjects.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 15","pages":"Pages 414-419"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324013442/pdf?md5=8a6b4256540701eb03c0ac83e23a5853&pid=1-s2.0-S2405896324013442-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324013442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalography (EEG) is one of the most popular techniques to investigate normal as well as pathological cerebral mechanisms, as it allows to measure, non-invasively and in real-time, the brain activity. However, modeling EEG is still extremely challenging, because of its high-dimensionality, low signal-to-noise ratio, and high individual variability. This paper proposes a novel latent representation to study brain networks using EEG by means of a robust dynamic factor analysis (RDFA) approach. We investigate the ability of this latent representation to discriminate between two groups of subjects, i.e. alcoholic and healthy.
By RDFA, we can extract a limited number of highly explanatory factors, as low as 8, significantly discriminating between the two groups. Also, we show that different brain patterns can be identified across different stimulation scenarios and EEG locations. Although preliminary, this work could give support to domain experts while providing some clinically-meaningful insights to identify common patterns as well as individual characteristics in different groups of healthy and pathological subjects.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.