Mohamed Boutchich*, Keiki Fukumoto*, Aymen Mahmoudi, Alexandre Jaffré, José Alvarez, David Alamarguy, Chanan Euaruksakul, Fabrice Oehler and Abdelkarim Ouerghi,
{"title":"Direct Reconstruction of the Band Diagram of Rhombohedral-Stacked Bilayer WSe2–Graphene Heterostructure via Photoemission Electron Microscopy","authors":"Mohamed Boutchich*, Keiki Fukumoto*, Aymen Mahmoudi, Alexandre Jaffré, José Alvarez, David Alamarguy, Chanan Euaruksakul, Fabrice Oehler and Abdelkarim Ouerghi, ","doi":"10.1021/acsaelm.4c0096510.1021/acsaelm.4c00965","DOIUrl":null,"url":null,"abstract":"<p >The determination of energy levels at heterointerfaces is important for understanding charge transport mechanisms, enabling judicious assembly of various electronic and optoelectronic devices. Herein, we investigated the interface properties of a heterostructure consisting of two-dimensional (2D) transition-metal dichalcogenides rhombohedral 3R (AB stacking) bilayer WSe<sub>2</sub> (3R-2 ML WSe<sub>2</sub>) and epitaxial graphene using photoemission electron microscopy (PEEM) with a femtosecond laser excitation source. The 2D energy band diagram was imaged in an energy-resolved mode (ER-PEEM). For the 3R-2 ML WSe<sub>2</sub>, the conduction band minimum and the exciton were located at 2.0 and 2.6 eV, respectively, while the valence band maximum was at 4.18 eV. The Fermi level of graphene was located at 4.08 eV. These observations were supported by photoluminescence and Kelvin probe atomic force microscopy results. Furthermore, we investigated carrier dynamics using the system in the time-resolved mode (TR-PEEM). We evidenced that irradiation with 2.4 eV pulses induced a surface photovoltage that relaxed within ∼25 ps. This methodology, coupling spectral and dynamic properties with space, time, and energy resolutions, allows the reconstruction of energy band diagrams and observation of the recombination mechanisms in nanoscale heterostructures. These parameters are instrumental for modeling and fabricating a wide range of heterojunction devices for photovoltaic and optoelectronic applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of energy levels at heterointerfaces is important for understanding charge transport mechanisms, enabling judicious assembly of various electronic and optoelectronic devices. Herein, we investigated the interface properties of a heterostructure consisting of two-dimensional (2D) transition-metal dichalcogenides rhombohedral 3R (AB stacking) bilayer WSe2 (3R-2 ML WSe2) and epitaxial graphene using photoemission electron microscopy (PEEM) with a femtosecond laser excitation source. The 2D energy band diagram was imaged in an energy-resolved mode (ER-PEEM). For the 3R-2 ML WSe2, the conduction band minimum and the exciton were located at 2.0 and 2.6 eV, respectively, while the valence band maximum was at 4.18 eV. The Fermi level of graphene was located at 4.08 eV. These observations were supported by photoluminescence and Kelvin probe atomic force microscopy results. Furthermore, we investigated carrier dynamics using the system in the time-resolved mode (TR-PEEM). We evidenced that irradiation with 2.4 eV pulses induced a surface photovoltage that relaxed within ∼25 ps. This methodology, coupling spectral and dynamic properties with space, time, and energy resolutions, allows the reconstruction of energy band diagrams and observation of the recombination mechanisms in nanoscale heterostructures. These parameters are instrumental for modeling and fabricating a wide range of heterojunction devices for photovoltaic and optoelectronic applications.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.