PRIME: Phase Reversed Interleaved Multi-Echo acquisition enables highly accelerated distortion-free diffusion MRI.

ArXiv Pub Date : 2024-09-11
Yohan Jun, Qiang Liu, Ting Gong, Jaejin Cho, Shohei Fujita, Xingwang Yong, Susie Y Huang, Lipeng Ning, Anastasia Yendiki, Yogesh Rathi, Berkin Bilgic
{"title":"PRIME: Phase Reversed Interleaved Multi-Echo acquisition enables highly accelerated distortion-free diffusion MRI.","authors":"Yohan Jun, Qiang Liu, Ting Gong, Jaejin Cho, Shohei Fujita, Xingwang Yong, Susie Y Huang, Lipeng Ning, Anastasia Yendiki, Yogesh Rathi, Berkin Bilgic","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition.</p><p><strong>Methods: </strong>A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution, and distortion-free dMRI, which includes two echoes where the first echo is for target diffusion-weighted imaging (DWI) acquisition with high-resolution and the second echo is acquired with either 1) lower-resolution for high-fidelity field map estimation, or 2) matching resolution to enable efficient diffusion relaxometry acquisitions. The sequence was evaluated on in vivo data acquired from healthy volunteers on clinical and Connectome 2.0 scanners.</p><p><strong>Results: </strong>In vivo experiments demonstrated that 1) high in-plane acceleration (Rin-plane of 5-fold with 2D partial Fourier) was achieved using the high-fidelity field maps estimated from the second echo, which was made at a lower resolution/acceleration to increase its SNR while matching the effective echo spacing of the first readout, 2) high-resolution diffusion relaxometry parameters were estimated from dual-echo PRIME data using a white matter model of multi-TE spherical mean technique (MTE-SMT), and 3) high-fidelity mesoscale DWI at 550 um isotropic resolution could be obtained in vivo by capitalizing on the high-performance gradients of the Connectome 2.0 scanner.</p><p><strong>Conclusion: </strong>The proposed PRIME sequence enabled highly accelerated, high-resolution, and distortion-free dMRI using an additional echo without prolonging scan time when gSlider encoding is utilized.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition.

Methods: A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution, and distortion-free dMRI, which includes two echoes where the first echo is for target diffusion-weighted imaging (DWI) acquisition with high-resolution and the second echo is acquired with either 1) lower-resolution for high-fidelity field map estimation, or 2) matching resolution to enable efficient diffusion relaxometry acquisitions. The sequence was evaluated on in vivo data acquired from healthy volunteers on clinical and Connectome 2.0 scanners.

Results: In vivo experiments demonstrated that 1) high in-plane acceleration (Rin-plane of 5-fold with 2D partial Fourier) was achieved using the high-fidelity field maps estimated from the second echo, which was made at a lower resolution/acceleration to increase its SNR while matching the effective echo spacing of the first readout, 2) high-resolution diffusion relaxometry parameters were estimated from dual-echo PRIME data using a white matter model of multi-TE spherical mean technique (MTE-SMT), and 3) high-fidelity mesoscale DWI at 550 um isotropic resolution could be obtained in vivo by capitalizing on the high-performance gradients of the Connectome 2.0 scanner.

Conclusion: The proposed PRIME sequence enabled highly accelerated, high-resolution, and distortion-free dMRI using an additional echo without prolonging scan time when gSlider encoding is utilized.

PRIME:相位反转交错多重回波采集技术可实现高度加速的无失真弥散磁共振成像。
目的:开发并评估一种新的脉冲序列,当使用广义切片抖动增强分辨率(gSlider)射频编码进行容积采集时,通过插入额外的回波,在不延长TR的情况下高度加速无失真扩散磁共振成像(dMRI):该序列包括两个回波,其中第一个回波用于目标扩散加权成像(DWI)的高分辨率采集,第二个回波用于 1) 较低分辨率的高保真场图估算,或 2) 匹配分辨率的高效扩散弛豫测量采集。在临床和 Connectome 2.0 扫描仪上对健康志愿者采集的体内数据对该序列进行了评估:活体实验表明:1)利用从第二次回波中估算出的高保真场图实现了高平面内加速(二维部分傅立叶的 5 倍 Rin-平面),第二次回波以较低的分辨率/加速度进行,以提高 SNR,同时与第一次读出的有效回波间距相匹配、2)利用多回波球面均值技术(MTE-SMT)的白质模型,从双回波 PRIME 数据中估算出高分辨率的扩散弛豫参数;3)利用 Connectome 2.0 扫描仪的高性能梯度,在体内获得 550 um 各向同性分辨率的高保真中尺度 DWI。结论:结论:当使用 gSlider 编码时,所提出的 PRIME 序列可利用额外的回波实现高度加速、高分辨率和无失真 dMRI,而不会延长扫描时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信