Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiangguo Yin, Caixiu Yang, Hui Dong, Jingting Liang, Mingxing Lin
{"title":"Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI.","authors":"Xiangguo Yin, Caixiu Yang, Hui Dong, Jingting Liang, Mingxing Lin","doi":"10.1007/s11517-024-03193-x","DOIUrl":null,"url":null,"abstract":"<p><p>The uncalibrated brain-computer interface (BCI) system based on steady-state visual evoked potential (SSVEP) can omit the training process and is closer to the practical application. Filter bank canonical correlation analysis (FBCCA), as a classical approach of uncalibrated SSVEP-based BCI, extracts the fundamental and harmonic ingredients through filter bank decomposition. Nevertheless, this method fails to fully leverage the temporal feature of the signal. The paper suggested utilizing reconstructed data with temporal delay in the computation of the canonical correlation coefficient, and the different combinations of the time-delayed embedding and FBCCA were discussed. We selected the data from seven participants in the Benchmark dataset for parameter optimization and evaluated the method across all participants. The experimental results showed that only embedding the time-delayed version into the first subband (FBdCCA) was better than embedding it into all subbands (FBdCCA(all)), and the accuracy of FBdCCA surpassed that of FBCCA significantly. This suggests that the approach of time-delayed embedding can further enhance the performance of FBCCA.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"355-363"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03193-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The uncalibrated brain-computer interface (BCI) system based on steady-state visual evoked potential (SSVEP) can omit the training process and is closer to the practical application. Filter bank canonical correlation analysis (FBCCA), as a classical approach of uncalibrated SSVEP-based BCI, extracts the fundamental and harmonic ingredients through filter bank decomposition. Nevertheless, this method fails to fully leverage the temporal feature of the signal. The paper suggested utilizing reconstructed data with temporal delay in the computation of the canonical correlation coefficient, and the different combinations of the time-delayed embedding and FBCCA were discussed. We selected the data from seven participants in the Benchmark dataset for parameter optimization and evaluated the method across all participants. The experimental results showed that only embedding the time-delayed version into the first subband (FBdCCA) was better than embedding it into all subbands (FBdCCA(all)), and the accuracy of FBdCCA surpassed that of FBCCA significantly. This suggests that the approach of time-delayed embedding can further enhance the performance of FBCCA.

用于未校准 SSVEP-BCI 的滤波器组时间延迟 CCA。
基于稳态视觉诱发电位(SSVEP)的非校准脑机接口(BCI)系统可省去训练过程,更接近实际应用。滤波器组典型相关分析(FBCCA)是基于稳态视觉诱发电位的无校准脑机接口(BCI)的一种经典方法,它通过滤波器组分解提取基波和谐波成分。然而,这种方法无法充分利用信号的时间特征。论文建议在计算典型相关系数时利用具有时间延迟的重建数据,并讨论了时间延迟嵌入和 FBCCA 的不同组合。我们从基准数据集中选取了七名参与者的数据进行参数优化,并在所有参与者中对该方法进行了评估。实验结果表明,仅将延时版本嵌入第一个子带(FBdCCA)的效果优于将其嵌入所有子带(FBdCCA(all))的效果,而且 FBdCCA 的准确率明显高于 FBCCA。这表明延时嵌入方法可以进一步提高 FBCCA 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信