MAD2L1 supports MYC-driven liver carcinogenesis in mice and predicts poor prognosis in human hepatocarcinoma.

IF 3.4 3区 医学 Q2 TOXICOLOGY
Xinjun Lu, Ya Zhang, Jiahao Xue, Matthias Evert, Diego Calvisi, Xin Chen, Xue Wang
{"title":"MAD2L1 supports MYC-driven liver carcinogenesis in mice and predicts poor prognosis in human hepatocarcinoma.","authors":"Xinjun Lu, Ya Zhang, Jiahao Xue, Matthias Evert, Diego Calvisi, Xin Chen, Xue Wang","doi":"10.1093/toxsci/kfae126","DOIUrl":null,"url":null,"abstract":"<p><p>Mitotic arrest-deficient 2 like 1 (MAD2L1) is a component of the mitotic spindle assembly checkpoint implicated in cancer cell proliferation and tumorigenesis. The functional role of MAD2L1 in hepatocellular carcinoma (HCC) has not been adequately investigated, especially in vivo. In the current manuscript, we sought to address the function of MAD2L1 in hepatocarcinogenesis. We found that MAD2L1 expression is upregulated in human HCCs, where its expression is associated with higher aggressive tumor grade, elevated proliferative activity, and poor prognosis. In human HCC cell lines, MAD2L1 knockdown led to decreased cell growth. Moreover, RNA-seq results demonstrated that MAD2L1 silencing induces the expression of genes associated with cell cycle, DNA replication, and various cancer-related pathways, supporting the critical role of MAD2L1 during HCC growth and differentiation. In a c-MYC-induced mouse HCC model, we revealed an increased expression of Mad2l1. Furthermore, Mad2l1 CRIPSR-mediated silencing prevented c-MYC-driven mouse liver development. Altogether, our study suggests that MAD2L1 plays a crucial role in hepatocarcinogenesis, and that its suppression could be a promising therapeutic strategy for treating human HCC. MAD2L1 plays a critical role in liver cancer development, silencing MAD2L1 reduced cell growth in vitro and inhibited c-MYC-driven liver cancer development in vivo. MAD2L1 suppression might be a promising therapeutic approach for treating human liver cancer.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":"41-51"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitotic arrest-deficient 2 like 1 (MAD2L1) is a component of the mitotic spindle assembly checkpoint implicated in cancer cell proliferation and tumorigenesis. The functional role of MAD2L1 in hepatocellular carcinoma (HCC) has not been adequately investigated, especially in vivo. In the current manuscript, we sought to address the function of MAD2L1 in hepatocarcinogenesis. We found that MAD2L1 expression is upregulated in human HCCs, where its expression is associated with higher aggressive tumor grade, elevated proliferative activity, and poor prognosis. In human HCC cell lines, MAD2L1 knockdown led to decreased cell growth. Moreover, RNA-seq results demonstrated that MAD2L1 silencing induces the expression of genes associated with cell cycle, DNA replication, and various cancer-related pathways, supporting the critical role of MAD2L1 during HCC growth and differentiation. In a c-MYC-induced mouse HCC model, we revealed an increased expression of Mad2l1. Furthermore, Mad2l1 CRIPSR-mediated silencing prevented c-MYC-driven mouse liver development. Altogether, our study suggests that MAD2L1 plays a crucial role in hepatocarcinogenesis, and that its suppression could be a promising therapeutic strategy for treating human HCC. MAD2L1 plays a critical role in liver cancer development, silencing MAD2L1 reduced cell growth in vitro and inhibited c-MYC-driven liver cancer development in vivo. MAD2L1 suppression might be a promising therapeutic approach for treating human liver cancer.

MAD2L1 支持 MYC 驱动的小鼠肝癌发生,并预测人类肝癌的不良预后。
有丝分裂停滞缺陷2样1(MAD2L1)是有丝分裂纺锤体组装检查点的一个组成部分,与癌细胞增殖和肿瘤发生有关。MAD2L1 在肝细胞癌(HCC)中的功能作用尚未得到充分研究,尤其是在体内。在本手稿中,我们试图研究 MAD2L1 在肝癌发生中的功能。我们发现,MAD2L1 在人类 HCC 中表达上调,其表达与肿瘤侵袭性分级较高、增殖活性增强和预后不良有关。在人类 HCC 细胞系中,MAD2L1 基因敲除会导致细胞生长下降。此外,RNA-seq结果表明,MAD2L1沉默会诱导细胞周期、DNA复制和各种癌症相关通路相关基因的表达,从而支持MAD2L1在HCC生长和分化过程中的关键作用。在 c-MYC 诱导的小鼠 HCC 模型中,我们发现 Mad2l1 的表达增加。此外,Mad2l1 CRIPSR介导的沉默可防止c-MYC诱导的小鼠肝脏发育。总之,我们的研究表明,MAD2L1在肝癌发生过程中起着至关重要的作用,抑制MAD2L1可能是治疗人类HCC的一种有前途的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信