Immunocompetent Brain Organoids with Microglia Allow Advanced Aging Research.

Q4 Biochemistry, Genetics and Molecular Biology
Raiane Oliveira Ferreira, Amanda Faria Assoni, Monize Valéria Ramos da Silva, Letícia Alves da Rocha, Mateus Vidigal de Castro, Débora Bertola, Mayana Zatz
{"title":"Immunocompetent Brain Organoids with Microglia Allow Advanced Aging Research.","authors":"Raiane Oliveira Ferreira, Amanda Faria Assoni, Monize Valéria Ramos da Silva, Letícia Alves da Rocha, Mateus Vidigal de Castro, Débora Bertola, Mayana Zatz","doi":"10.1007/7651_2024_565","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a complex and multifactorial process that significantly affects brain function and health, since it is commonly associated with the emergence of neurodegenerative diseases. Recent advances in stem cell technology have facilitated the development of brain organoids, three-dimensional structures that mimic key aspects of brain architecture and functionality. By incorporating microglia, the resident monocyte-derived immune cells of the central nervous system, immunocompetent brain organoids can provide a more physiologically relevant model for studying brain aging. This chapter explores the methodology of immunocompetent brain organoids for advanced aging research, detailing protocols for their generation from a co-culture of neural stem cells and primitive macrophage progenitors.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a complex and multifactorial process that significantly affects brain function and health, since it is commonly associated with the emergence of neurodegenerative diseases. Recent advances in stem cell technology have facilitated the development of brain organoids, three-dimensional structures that mimic key aspects of brain architecture and functionality. By incorporating microglia, the resident monocyte-derived immune cells of the central nervous system, immunocompetent brain organoids can provide a more physiologically relevant model for studying brain aging. This chapter explores the methodology of immunocompetent brain organoids for advanced aging research, detailing protocols for their generation from a co-culture of neural stem cells and primitive macrophage progenitors.

具有小胶质细胞的免疫功能脑有器官组织允许进行高级老化研究
衰老是一个复杂的多因素过程,对大脑功能和健康有重大影响,因为衰老通常与神经退行性疾病的出现有关。干细胞技术的最新进展促进了脑器官组织的发展,这种三维结构可模仿大脑结构和功能的关键方面。通过结合中枢神经系统的常驻单核细胞衍生免疫细胞--小胶质细胞,免疫功能健全的脑器官组织可为研究大脑衰老提供更贴近生理的模型。本章探讨了用于高级衰老研究的免疫功能脑器质体的方法,详细介绍了从神经干细胞和原始巨噬细胞祖细胞共培养产生免疫功能脑器质体的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信