Comprehensive sequential genetic analysis delineating frequency, patterns, and prognostic impact of genomic dynamics in a real-world cohort of patients with lower-risk MDS
Paolo Mazzeo, Christina Ganster, John Wiedenhöft, Katayoon Shirneshan, Katharina Rittscher, Elzbieta B. Brzuszkiewicz, Doris Steinemann, Maximilian Schieck, Catharina Müller-Thomas, Hannes Treiber, Friederike Braulke, Ulrich Germing, Katja Sockel, Ekaterina Balaian, Julie Schanz, Uwe Platzbecker, Katharina S. Götze, Detlef Haase
{"title":"Comprehensive sequential genetic analysis delineating frequency, patterns, and prognostic impact of genomic dynamics in a real-world cohort of patients with lower-risk MDS","authors":"Paolo Mazzeo, Christina Ganster, John Wiedenhöft, Katayoon Shirneshan, Katharina Rittscher, Elzbieta B. Brzuszkiewicz, Doris Steinemann, Maximilian Schieck, Catharina Müller-Thomas, Hannes Treiber, Friederike Braulke, Ulrich Germing, Katja Sockel, Ekaterina Balaian, Julie Schanz, Uwe Platzbecker, Katharina S. Götze, Detlef Haase","doi":"10.1002/hem3.70014","DOIUrl":null,"url":null,"abstract":"<p>The acquisition of subsequent genetic lesions (clonal evolution, CE) and/or the expansion of existing clones (CEXP) contributes to clonal dynamics (CD) in myelodysplastic syndromes (MDS). Although CD plays an important role in high-risk patients in disease progression and transformation into acute myeloid leukemia (AML), knowledge about CD in lower-risk MDS (LR-MDS) patients is limited due to lack of robust longitudinal data considering the long clinically stable courses of the disease. In this retrospective analysis, we delineate the frequency and the prognostic impact of CD in an unselected real-world cohort of LR-MDS patients. We screened 68 patients with a median follow-up of 40.5 months and a median of 7.5 (range: 2–22) timepoints for CE and CEXP detected by chromosomal banding analysis, fluorescence in situ hybridization, sequencing, and molecular karyotyping. In 30/68 patients, 47 CE events and a CD rate of 1 event per 4 years were documented. Of note, patients with at least 1 CE event had an increased probability for subsequent treatment. Unexpectedly, CE did not correlate with inferior outcomes, which could be reasonably explained by CD detection triggering the subsequent start of a disease-modifying therapy.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"8 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The acquisition of subsequent genetic lesions (clonal evolution, CE) and/or the expansion of existing clones (CEXP) contributes to clonal dynamics (CD) in myelodysplastic syndromes (MDS). Although CD plays an important role in high-risk patients in disease progression and transformation into acute myeloid leukemia (AML), knowledge about CD in lower-risk MDS (LR-MDS) patients is limited due to lack of robust longitudinal data considering the long clinically stable courses of the disease. In this retrospective analysis, we delineate the frequency and the prognostic impact of CD in an unselected real-world cohort of LR-MDS patients. We screened 68 patients with a median follow-up of 40.5 months and a median of 7.5 (range: 2–22) timepoints for CE and CEXP detected by chromosomal banding analysis, fluorescence in situ hybridization, sequencing, and molecular karyotyping. In 30/68 patients, 47 CE events and a CD rate of 1 event per 4 years were documented. Of note, patients with at least 1 CE event had an increased probability for subsequent treatment. Unexpectedly, CE did not correlate with inferior outcomes, which could be reasonably explained by CD detection triggering the subsequent start of a disease-modifying therapy.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.