Elisabeth A. Rosenthal, Li Hsu, Minta Thomas, Ulrike Peters, Christopher Kachulis, Karynne Patterson, Gail P. Jarvik
{"title":"Comparing Ancestry Standardization Approaches for a Transancestry Colorectal Cancer Polygenic Risk Score","authors":"Elisabeth A. Rosenthal, Li Hsu, Minta Thomas, Ulrike Peters, Christopher Kachulis, Karynne Patterson, Gail P. Jarvik","doi":"10.1002/gepi.22590","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic risk scores (PRSs) aim to identify high polygenic risk individuals. Due to differences in genetic background, PRS distributions vary by ancestry, necessitating standardization. We compared four <i>post-hoc</i> methods using the All of Us Research Program Whole Genome Sequence data for a transancestry CRC PRS. We contrasted results from linear models trained on A. the entire data or an ancestrally diverse subset AND B. covariates including principal components of ancestry or admixture. Standardization with the training subset also adjusted the variance. All methods performed similarly within ancestry, OR (95% C.I.) per s.d. change in PRS: African 1.5 (1.02, 2.08), Admixed American 2.2 (1.27, 3.85), European 1.6 (1.43, 1.89), and Middle Eastern 1.1 (0.71, 1.63). Using admixture and an ancestrally diverse training set provided distributions closest to standard Normal. Training a model on ancestrally diverse participants, adjusting both the mean and variance using admixture as covariates, created standard Normal <i>z</i>-scores, which can be used to identify patients at high polygenic risk. These scores can be incorporated into comprehensive risk calculation including other known risk factors, allowing for more precise risk estimates.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22590","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a complex disease with monogenic, polygenic and environmental risk factors. Polygenic risk scores (PRSs) aim to identify high polygenic risk individuals. Due to differences in genetic background, PRS distributions vary by ancestry, necessitating standardization. We compared four post-hoc methods using the All of Us Research Program Whole Genome Sequence data for a transancestry CRC PRS. We contrasted results from linear models trained on A. the entire data or an ancestrally diverse subset AND B. covariates including principal components of ancestry or admixture. Standardization with the training subset also adjusted the variance. All methods performed similarly within ancestry, OR (95% C.I.) per s.d. change in PRS: African 1.5 (1.02, 2.08), Admixed American 2.2 (1.27, 3.85), European 1.6 (1.43, 1.89), and Middle Eastern 1.1 (0.71, 1.63). Using admixture and an ancestrally diverse training set provided distributions closest to standard Normal. Training a model on ancestrally diverse participants, adjusting both the mean and variance using admixture as covariates, created standard Normal z-scores, which can be used to identify patients at high polygenic risk. These scores can be incorporated into comprehensive risk calculation including other known risk factors, allowing for more precise risk estimates.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.