Jeffrey Zhong, Albert Jang, Jorge Garcia, Norbert Avril, Qiubai Li, Patrick Wojtylak, Neal Shore, Scott Tagawa, Pedro Barata
{"title":"Advances in prostate cancer treatment: Radionuclide therapy for prostate cancer.","authors":"Jeffrey Zhong, Albert Jang, Jorge Garcia, Norbert Avril, Qiubai Li, Patrick Wojtylak, Neal Shore, Scott Tagawa, Pedro Barata","doi":"10.1016/bs.acr.2024.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>The optimal treatment of metastatic castration-resistant prostate cancer (mCRPC) continues to be challenging, given the multitude of life prolonging treatment options. Radionuclide therapy delivers concentrated doses of radiation via ionizing particles chelated to ligands or antibody-based molecules with specific tumor targets and is approved for patients with treatment resistant mCRPC. Variations of radionuclide therapies within the continuum of prostate cancer treatment are being investigated. Landmark phase III clinical trials of beta-emitting <sup>177</sup>Lu-PSMA radionuclide therapy have demonstrated the utility of <sup>177</sup>Lu-PSMA in the treatment of mCRPC. Further research into alpha-emitting radionuclide therapy and vectors may provide alternative treatments for patients with treatment resistant mCRPC. As radionuclide therapy treatment options evolve, assessing appropriate patient selection for radionuclide therapy is important and may be facilitated by advances in imaging and blood-based biomarkers. Exploration of other approved life prolonging therapies in combination with radionuclide therapy has shown increasing interest as a potential method of combatting radionuclide therapy resistance. In this chapter, we review various types of radionuclide therapies for mCRPC, patient selection for radionuclide therapy from outcome predictions, ongoing clinical trials of radiopharmaceuticals for treatment of prostate cancer, and the resistance mechanisms and challenges to radionuclide therapy.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.07.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The optimal treatment of metastatic castration-resistant prostate cancer (mCRPC) continues to be challenging, given the multitude of life prolonging treatment options. Radionuclide therapy delivers concentrated doses of radiation via ionizing particles chelated to ligands or antibody-based molecules with specific tumor targets and is approved for patients with treatment resistant mCRPC. Variations of radionuclide therapies within the continuum of prostate cancer treatment are being investigated. Landmark phase III clinical trials of beta-emitting 177Lu-PSMA radionuclide therapy have demonstrated the utility of 177Lu-PSMA in the treatment of mCRPC. Further research into alpha-emitting radionuclide therapy and vectors may provide alternative treatments for patients with treatment resistant mCRPC. As radionuclide therapy treatment options evolve, assessing appropriate patient selection for radionuclide therapy is important and may be facilitated by advances in imaging and blood-based biomarkers. Exploration of other approved life prolonging therapies in combination with radionuclide therapy has shown increasing interest as a potential method of combatting radionuclide therapy resistance. In this chapter, we review various types of radionuclide therapies for mCRPC, patient selection for radionuclide therapy from outcome predictions, ongoing clinical trials of radiopharmaceuticals for treatment of prostate cancer, and the resistance mechanisms and challenges to radionuclide therapy.