StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization.

Kaiyuan Tang, Chaoli Wang
{"title":"StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization.","authors":"Kaiyuan Tang, Chaoli Wang","doi":"10.1109/TVCG.2024.3456342","DOIUrl":null,"url":null,"abstract":"<p><p>In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e., content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3456342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e., content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.

StyleRF-VolVis:神经辐射场的风格转移,实现富有表现力的体量可视化。
在体量可视化领域,可视化合成因其无需遵循传统的渲染管道即可生成新颖的可视化效果而备受关注。然而,现有的基于生成式对抗网络的解决方案往往需要许多训练图像,并耗费大量的训练时间。然而,低质量、一致性和灵活性等问题依然存在。本文介绍了 StyleRF-VolVis,这是一种创新的风格转移框架,通过神经辐射场(NeRF)实现富有表现力的体积可视化(VolVis)。StyleRF-VolVis 的表现力体现在以下几个方面:准确分离底层场景的几何图形(即内容)和色彩外观(即风格);方便地修改原始渲染的色彩、不透明度和照明,同时保持各视图视觉内容的一致性;有效地将任意风格从参考图像转移到重建的三维场景。为了实现这些目标,我们设计了用于场景几何提取的基本 NeRF 模型、用于逼真编辑的辐射场区域分类调色板颜色网络,以及用于非逼真编辑的通过知识提炼解除调色板限制的无限制颜色网络。我们通过对各种体积渲染场景和参考图像进行实验,并将 StyleRF-VolVis 与其他基于图像(AdaIN)、基于视频(ReReVST)和基于 NeRF(ARF 和 SNeRF)的样式渲染解决方案进行比较,证明了 StyleRF-VolVis 的卓越品质、一致性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信