Christoph Ebner;Alexander Plopski;Dieter Schmalstieg;Denis Kalkofen
{"title":"Gaze-Contingent Layered Optical See-Through Displays with a Confidence-Driven View Volume","authors":"Christoph Ebner;Alexander Plopski;Dieter Schmalstieg;Denis Kalkofen","doi":"10.1109/TVCG.2024.3456204","DOIUrl":null,"url":null,"abstract":"The vergence-accommodation conflict (VAC) presents a major perceptual challenge for head-mounted displays with a fixed image plane. Varifocal and layered display designs can mitigate the VAC. However, the image quality of varifocal displays is affected by imprecise eye tracking, whereas layered displays suffer from reduced image contrast as the distance between layers increases. Combined designs support a larger workspace and tolerate some eye-tracking error. However, any layered design with a fixed layer spacing restricts the amount of error compensation and limits the in-focus contrast. We extend previous hybrid designs by introducing confidence-driven volume control, which adjusts the size of the view volume at runtime. We use the eye tracker's confidence to control the spacing of display layers and optimize the trade-off between the display's view volume and the amount of eye tracking error the display can compensate. In the case of high-quality focus point estimation, our approach provides high in-focus contrast, whereas low-quality eye tracking increases the view volume to tolerate the error. We describe our design, present its implementation as an optical-see head-mounted display using a multiplicative layer combination, and present an evaluation comparing our design with previous approaches.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"7203-7213"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670426","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670426/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The vergence-accommodation conflict (VAC) presents a major perceptual challenge for head-mounted displays with a fixed image plane. Varifocal and layered display designs can mitigate the VAC. However, the image quality of varifocal displays is affected by imprecise eye tracking, whereas layered displays suffer from reduced image contrast as the distance between layers increases. Combined designs support a larger workspace and tolerate some eye-tracking error. However, any layered design with a fixed layer spacing restricts the amount of error compensation and limits the in-focus contrast. We extend previous hybrid designs by introducing confidence-driven volume control, which adjusts the size of the view volume at runtime. We use the eye tracker's confidence to control the spacing of display layers and optimize the trade-off between the display's view volume and the amount of eye tracking error the display can compensate. In the case of high-quality focus point estimation, our approach provides high in-focus contrast, whereas low-quality eye tracking increases the view volume to tolerate the error. We describe our design, present its implementation as an optical-see head-mounted display using a multiplicative layer combination, and present an evaluation comparing our design with previous approaches.