Predicting Age from White Matter Diffusivity with Residual Learning.

Chenyu Gao, Michael E Kim, Ho Hin Lee, Qi Yang, Nazirah Mohd Khairi, Praitayini Kanakaraj, Nancy R Newlin, Derek B Archer, Angela L Jefferson, Warren D Taylor, Brian D Boyd, Lori L Beason-Held, Susan M Resnick, Yuankai Huo, Katherine D Van Schaik, Kurt G Schilling, Daniel Moyer, Ivana Išgum, Bennett A Landman
{"title":"Predicting Age from White Matter Diffusivity with Residual Learning.","authors":"Chenyu Gao, Michael E Kim, Ho Hin Lee, Qi Yang, Nazirah Mohd Khairi, Praitayini Kanakaraj, Nancy R Newlin, Derek B Archer, Angela L Jefferson, Warren D Taylor, Brian D Boyd, Lori L Beason-Held, Susan M Resnick, Yuankai Huo, Katherine D Van Schaik, Kurt G Schilling, Daniel Moyer, Ivana Išgum, Bennett A Landman","doi":"10.1117/12.3006525","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI's advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are non-linearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12926 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI's advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are non-linearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.

利用残差学习从白质扩散率预测年龄
成像结果与特定实际年龄范围内的预期结果不一致,可作为神经系统疾病和死亡风险增加的早期指标。从结构性磁共振成像(MRI)数据中估算计时年龄以及与预期结果的偏差,已成为开发对此类偏差敏感的生物标记物的一项重要代理任务。作为结构分析的补充,弥散张量成像(DTI)已被证明能有效识别大脑白质中与年龄相关的微观结构变化,从而成为预测大脑年龄的另一种有前途的方法。虽然早期的研究试图利用 DTI 的优势进行年龄估计,但没有证据表明这种预测的成功是由于 DTI 提供了独特的微观结构和弥散性特征,而不是 DTI 数据中也有的宏观结构特征。因此,我们试图开发白质特异性年龄估计,以捕捉白质正常老化的偏差。具体来说,我们在使用两种不同的方法从 DTI 标量图像预测年龄时,有意忽略了宏观结构信息。第一种方法只从感兴趣区(ROI)提取微观结构特征。第二种方法则应用三维残差神经网络(ResNets)直接从图像中学习特征,然后对图像进行非线性注册,并根据模板进行扭曲,以尽量减少宏观结构的变化。在对未见数据进行测试时,第一种方法得出认知正常参与者的平均绝对误差(MAE)为 6.11 ± 0.19 年,认知受损参与者的平均绝对误差(MAE)为 6.62 ± 0.30 年,而第二种方法得出认知正常参与者的平均绝对误差(MAE)为 4.69 ± 0.23 年,认知受损参与者的平均绝对误差(MAE)为 4.96 ± 0.28 年。我们发现,ResNet 模型能捕捉到更微妙的、非宏观结构性的脑年龄预测特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信