Learning-based Free-Water Correction using Single-shell Diffusion MRI.

Tianyuan Yao, Derek B Archer, Praitayini Kanakaraj, Nancy Newlin, Shunxing Bao, Daniel Moyer, Kurt Schilling, Bennett A Landman, Yuankai Huo
{"title":"Learning-based Free-Water Correction using Single-shell Diffusion MRI.","authors":"Tianyuan Yao, Derek B Archer, Praitayini Kanakaraj, Nancy Newlin, Shunxing Bao, Daniel Moyer, Kurt Schilling, Bennett A Landman, Yuankai Huo","doi":"10.1117/12.3006901","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion magnetic resonance imaging (dMRI) offers the ability to assess subvoxel brain microstructure through the extraction of biomarkers like fractional anisotropy, as well as to unveil brain connectivity by reconstructing white matter fiber trajectories. However, accurate analysis becomes challenging at the interface between cerebrospinal fluid and white matter, where the MRI signal originates from both the cerebrospinal fluid and the white matter partial volume. The presence of free water partial volume effects introduces a substantial bias in estimating diffusion properties, thereby limiting the clinical utility of DWI. Moreover, current mathematical models often lack applicability to single-shell acquisitions commonly encountered in clinical settings. Without appropriate regularization, direct model fitting becomes impractical. We propose a novel voxel-based deep learning method for mapping and correcting free-water partial volume contamination in DWI to address these limitations. This approach leverages data-driven techniques to reliably infer plausible free-water volumes across different diffusion MRI acquisition schemes, including single-shell acquisitions. Our evaluation demonstrates that the introduced methodology consistently produces more consistent and plausible results than previous approaches. By effectively mitigating the impact of free water partial volume effects, our approach enhances the accuracy and reliability of DWI analysis for single-shell dMRI, thereby expanding its applications in assessing brain microstructure and connectivity.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12926 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion magnetic resonance imaging (dMRI) offers the ability to assess subvoxel brain microstructure through the extraction of biomarkers like fractional anisotropy, as well as to unveil brain connectivity by reconstructing white matter fiber trajectories. However, accurate analysis becomes challenging at the interface between cerebrospinal fluid and white matter, where the MRI signal originates from both the cerebrospinal fluid and the white matter partial volume. The presence of free water partial volume effects introduces a substantial bias in estimating diffusion properties, thereby limiting the clinical utility of DWI. Moreover, current mathematical models often lack applicability to single-shell acquisitions commonly encountered in clinical settings. Without appropriate regularization, direct model fitting becomes impractical. We propose a novel voxel-based deep learning method for mapping and correcting free-water partial volume contamination in DWI to address these limitations. This approach leverages data-driven techniques to reliably infer plausible free-water volumes across different diffusion MRI acquisition schemes, including single-shell acquisitions. Our evaluation demonstrates that the introduced methodology consistently produces more consistent and plausible results than previous approaches. By effectively mitigating the impact of free water partial volume effects, our approach enhances the accuracy and reliability of DWI analysis for single-shell dMRI, thereby expanding its applications in assessing brain microstructure and connectivity.

利用单壳扩散核磁共振成像进行基于学习的自由水校正
弥散磁共振成像(dMRI)能够通过提取分数各向异性等生物标志物来评估亚体细胞的大脑微观结构,并通过重建白质纤维轨迹来揭示大脑的连接性。然而,在脑脊液和白质的交界处,磁共振成像信号同时来源于脑脊液和白质的部分体积,因此精确分析变得具有挑战性。游离水部分容积效应的存在为估计扩散特性带来了很大的偏差,从而限制了 DWI 的临床应用。此外,目前的数学模型往往不适用于临床上常见的单壳采集。如果没有适当的正则化,直接拟合模型就变得不切实际。我们提出了一种新颖的基于体素的深度学习方法,用于映射和校正 DWI 中的自由水部分容积污染,以解决这些局限性。这种方法利用数据驱动技术,可靠地推断出不同弥散 MRI 采集方案(包括单壳采集)中可信的自由水体积。我们的评估结果表明,与之前的方法相比,引入的方法能持续产生更一致、更可信的结果。通过有效减轻自由水部分体积效应的影响,我们的方法提高了单壳 dMRI DWI 分析的准确性和可靠性,从而扩大了其在评估大脑微观结构和连接性方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信