Nucleus subtype classification using inter-modality learning.

Lucas W Remedios, Shunxing Bao, Samuel W Remedios, Ho Hin Lee, Leon Y Cai, Thomas Li, Ruining Deng, Can Cui, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Mary K Washington, Lori A Coburn, Keith T Wilson, Yuankai Huo, Bennett A Landman
{"title":"Nucleus subtype classification using inter-modality learning.","authors":"Lucas W Remedios, Shunxing Bao, Samuel W Remedios, Ho Hin Lee, Leon Y Cai, Thomas Li, Ruining Deng, Can Cui, Jia Li, Qi Liu, Ken S Lau, Joseph T Roland, Mary K Washington, Lori A Coburn, Keith T Wilson, Yuankai Huo, Bennett A Landman","doi":"10.1117/12.3006237","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the way cells communicate, co-locate, and interrelate is essential to understanding human physiology. Hematoxylin and eosin (H&E) staining is ubiquitously available both for clinical studies and research. The Colon Nucleus Identification and Classification (CoNIC) Challenge has recently innovated on robust artificial intelligence labeling of six cell types on H&E stains of the colon. However, this is a very small fraction of the number of potential cell classification types. Specifically, the CoNIC Challenge is unable to classify epithelial subtypes (progenitor, endocrine, goblet), lymphocyte subtypes (B, helper T, cytotoxic T), or connective subtypes (fibroblasts, stromal). In this paper, we propose to use inter-modality learning to label previously un-labelable cell types on virtual H&E. We leveraged multiplexed immunofluorescence (MxIF) histology imaging to identify 14 subclasses of cell types. We performed style transfer to synthesize virtual H&E from MxIF and transferred the higher density labels from MxIF to these virtual H&E images. We then evaluated the efficacy of learning in this approach. We identified helper T and progenitor nuclei with positive predictive values of 0.34 ± 0.15 (prevalence 0.03 ± 0.01) and 0.47 ± 0.1 (prevalence 0.07 ± 0.02) respectively on virtual H&E. This approach represents a promising step towards automating annotation in digital pathology.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12933 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the way cells communicate, co-locate, and interrelate is essential to understanding human physiology. Hematoxylin and eosin (H&E) staining is ubiquitously available both for clinical studies and research. The Colon Nucleus Identification and Classification (CoNIC) Challenge has recently innovated on robust artificial intelligence labeling of six cell types on H&E stains of the colon. However, this is a very small fraction of the number of potential cell classification types. Specifically, the CoNIC Challenge is unable to classify epithelial subtypes (progenitor, endocrine, goblet), lymphocyte subtypes (B, helper T, cytotoxic T), or connective subtypes (fibroblasts, stromal). In this paper, we propose to use inter-modality learning to label previously un-labelable cell types on virtual H&E. We leveraged multiplexed immunofluorescence (MxIF) histology imaging to identify 14 subclasses of cell types. We performed style transfer to synthesize virtual H&E from MxIF and transferred the higher density labels from MxIF to these virtual H&E images. We then evaluated the efficacy of learning in this approach. We identified helper T and progenitor nuclei with positive predictive values of 0.34 ± 0.15 (prevalence 0.03 ± 0.01) and 0.47 ± 0.1 (prevalence 0.07 ± 0.02) respectively on virtual H&E. This approach represents a promising step towards automating annotation in digital pathology.

利用跨模态学习进行核亚型分类
要了解人体生理学,就必须了解细胞沟通、共存和相互关联的方式。血红素和伊红(H&E)染色在临床研究和科研中普遍使用。结肠细胞核识别与分类(CoNIC)挑战赛最近创新性地对结肠 H&E 染色上的六种细胞类型进行了强大的人工智能标记。然而,这只是潜在细胞分类类型数量的一小部分。具体来说,CoNIC 挑战赛无法对上皮细胞亚型(祖细胞、内分泌细胞、鹅口疮细胞)、淋巴细胞亚型(B 细胞、辅助性 T 细胞、细胞毒性 T 细胞)或结缔组织亚型(成纤维细胞、基质细胞)进行分类。在本文中,我们建议使用跨模态学习来标记虚拟 H&E 上以前无法标记的细胞类型。我们利用多重免疫荧光(MxIF)组织学成像技术识别出 14 种亚类细胞类型。我们进行了样式转移,从 MxIF 合成虚拟 H&E,并将 MxIF 的高密度标签转移到这些虚拟 H&E 图像上。然后,我们评估了这种方法的学习效果。我们在虚拟 H&E 上识别出了辅助 T 核和祖细胞核,其阳性预测值分别为 0.34 ± 0.15(流行率为 0.03 ± 0.01)和 0.47 ± 0.1(流行率为 0.07 ± 0.02)。这种方法为实现数字病理学注释自动化迈出了可喜的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信